Preserving Electronic Journals/Serials

Office of Strategic Initiatives
Repository Development Center
Journal preservation
eJournal Preservation at the Library

• Efforts began in 2000 to start preserving electronic serials/journals that publishers would send to library through the copyright mandatory deposit demand mechanism.

• A new interim regulation was published in Feb 2010 allowing the Library to demand the electronic journals from publishers.

• More and more publishers were starting to publish electronically; some publishers are becoming paperless by only publishing electronic-only journals.
eDeposit and DMS

• The eDeposit program led to a library wide effort across various divisions: Copyright, Library Services, ITS, OSI, and the Law Library.

• The eDeposit program led to the development of a new System -- DMS -- and Integration of DMS with eCO (electronic Copyright System), CTS (Content Transfer Service) and the Voyager ILS (Integrated Library System)
<table>
<thead>
<tr>
<th>Core</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publishers</td>
<td>Change</td>
</tr>
<tr>
<td>Journals</td>
<td>Change</td>
</tr>
<tr>
<td>Service Requests</td>
<td>Change</td>
</tr>
<tr>
<td>Deliveries</td>
<td>Change</td>
</tr>
<tr>
<td>Issues</td>
<td>Change</td>
</tr>
<tr>
<td>Articles</td>
<td>Change</td>
</tr>
<tr>
<td>Authors</td>
<td>Change</td>
</tr>
<tr>
<td>Cases</td>
<td>Change</td>
</tr>
<tr>
<td>Volumes</td>
<td>Change</td>
</tr>
</tbody>
</table>
DMS Stacks Viewer for eJournals

A Backtracking-Based Algorithm for Hypertree Decomposition

GEORG GOTTLOB
University of Oxford

MARKO SABER
University of Durham

Hypertree decompositions of hypergraphs are a generalization of tree decompositions of graphs. The corresponding hypertree-width measures the tree-likeness and therefore, is an indicator for the tractability of the associated computation problem. Several NP-hard decisions and computation problems are known to be tractable on instances whose treewidth is represented by a hypertree of bounded hypertree-width. Roughly speaking, the smaller the hypertree-width, the faster the computation problem can be solved. In this paper, we present a new backtracking-based algorithm for computing hypertree decompositions of small width. Our benchmark evaluations have shown that our algorithm significantly outperforms state-of-the-art algorithms, the only about hypertree decomposition algorithms.}

Press [esc] to close
The DMS system was designed to manage configuration, workflow, access, and the steps within the DMS necessary to view, assign and edit metadata to, and accept or reject a delivery in compliance with a Copyright demand.
Automated End to End Flow

ILS DMS System Interaction Diagram

ILS
- Voy Client
- ILS Voyager
- ILS Voyager Bib ID ISSN
-LCBD
- Batchcat Client
- Chron Job
- Batchcat Pick and Scan Midnight import
- Other Systems
- OCLC

CAD
- CAD Voyager Bib ID ISSN
- MARC 21 Massaging
- Eco Registration/ E-deposit
- 1. Case Notification
- 2. Update LS 985 with SR corresponding unique ID
- 3. Delivery Notification On LS Accept MFHID Check

LS
- eCO
- Unique identifier BIB ID
- DMS
- Handle Generator
- Pre process
- Journal metadata Title SR ISSN
- User Interface Journals
- Handle Server Handle url Handle registration

RDC
- CTS
- Journal data

Note: Summary Holding Generator is out of scope of this Release.
Facts/Challenges on Metadata Extraction for eJournals

- Lack of common descriptive metadata
- Lack of structural metadata
- Poor data quality
- Continuous publication model
- Learning curve

For further details on this please contact Tong Wang at twan@loc.gov
DMS Demo

by Laura Graham
Thanks

• Questions ?

• Our Contact Info
 • arai@loc.gov
 • twan@loc.gov
 • lgrah@loc.gov