

PRESERVING.EXE

Shelved software from the Library of Congress collection at the National Audio-Visual Conservation Center.

October,
2013

Toward a National Strategy for Software
Preservation

A report from the National Digital Information Infrastructure and Preservation
Program of the Library of Congress, focused on identifying valuable and at-
risk software. Topics covered include executable software preservation, game
preservation, electronic literature and ideas for approaches to ensure long-
term access.

Preserving.exe

Page 1

Contents

Preserving.exe: Toward a National Strategy for Software Preservation
by Trevor Owens, Library of Congress …...……………….……………………….…....2

The Lures of Software Preservation

by Henry Lowood, Stanford University ..………………………………………….…….4

An Executable Past: The Case for a National Software Registry

by Matthew Kirschenbaum, Department of English and Maryland Institute for
Technology in the Humanities, University of Maryland ………………….…………....12

We didn’t see this coming: Our unexpected roles as software archivists and what we
learned at Preserving.exe

by Alice Allen, Astrophysics Source Code Library & Peter Teuben, University of Maryland,
Astronomy Department .…………………………………..…………………………. 23

Appendix A:. Life-Saving: The National Software Reference Library

Interview with Doug White, National Institute of Standards and Technology, National
Software Reference Library…………………………………………………………. 32

Appendix B:. Challenges in the Curation of Time Based Media Art

Interview with Michael Mansfield, Smithsonian American Art Museum.………………. 39

Preserving.exe

Page 2

Preserving.exe

T O W A R D A N A T I O N A L S T R A T E G Y F O R S O F T W A R E
P R E S E R VA T I O N
America runs on software. From operating streetlights and financial markets, to producing
music and film, to conducting research and scholarship in the sciences and the humanities,
software shapes and structures our lives. Software is simultaneously a baseline infrastructure,
and a mode of creative expression. It is both the key to accessing and making sense of digital
objects and an increasingly important historical artifact in its own right. When historians write
the social, political, economic and cultural history of the 21st century they will need to consult
the software of the times.

On May 20-21 2013, the National Digital Information Infrastructure and Preservation hosted
“Preserving.exe: Toward a National Strategy for Preserving Software” a summit focused on
meeting the challenge of collecting and preserving software. The event brought together
software creators, representatives from source code repositories, curators and archivists
working on collecting and preserving software, and scholars studying software and source
code as cultural, historical and scientific artifacts.

The goals of the summit were as follows:

 Articulate the problems and opportunities of software preservation.

 Encourage new partnerships and collaborations that will support organizational roles
and responsibilities related to software preservation.

 Advise the Library of Congress on next steps, including different methods and
approaches that will develop criteria for assessing long-term value, and new
organizational models that best support the stewardship of software content.

This report is intended to highlight the issues and concerns raised at the summit and identify
key next steps for ensuring long term access to software. To best represent the distinct
perspectives involved in the summit this report is not an aggregate overview. Instead, the
report includes three perspective pieces; a curatorial perspective, a perspective from a
humanities scholar and the perspective of two scientists working to ensure access to scientific
source code.

Henry Lowood, Curator for History of Science & Technology Collections at Stanford University
Libraries, describes three lures of software preservation in exploring issues around description,
metadata creation, access and delivery mechanisms for software collections.

Matthew Kirschenbaum, Associate Professor in the Department of English at the University of
Maryland and Associate Director of the Maryland Institute for Technology in the Humanities,
articulates the value of the record of software to a range of constituencies and offers a call to
action to develop a national software registry modeled on the national film registry.

Alice Allen, primary editor of the Astrophysics Source Code Library and Peter Teuben,
University of Maryland Astronomy Department, offer a commentary on how the summit has
helped them think in a longer time frame about the value of astrophysics source codes.

Preserving.exe

Page 3

For further context, we have included two interviews that were shared as pre-reading with
participants in the summit. The interview with Doug White explains the process and design of
the National Institute for Standards and Technology’s National Software Reference Library.
The NSRL is both a path breaking model for other software preservation projects and already
a key player in the kinds of partnerships that are making software preservation happen. The
interview with Michael Mansfield, an associate curator of film and media arts at the
Smithsonian American Art Museum, explores how issues in software preservation manifest in
the curation of artwork.

The term “toward” in the title of this report is important. This is not a national strategy. It is an
attempt to advance the national conversation about collecting and preserving software. Far
from providing a final word, the goal of this collection of perspectives is to broaden and
deepen the dialog on software preservation with the wider community of cultural heritage
organizations. As preserving and providing access to software becomes an increasingly larger
part of the work of libraries, archives and museums, it is critical that organizations recognize
and meet the distinct needs of their local users. In bringing together, hosting, and reporting out
on events like this it is our hope that we can promote a collaborative approach to building a
distributed national software collection.

Preserving.exe

Page 4

The Lures of Software
Preservation
H E N RY L O W O O D , C U R A T O R F O R H I S T O RY O F S C I E N C E &
T E C H N O L O G Y C O L L E C T I O N S A N D F I L M & M E D I A
C O L L E C T I O N S , S T A N F O R D U N I V E R S I T Y L I B R A R I E S

INTRODUCTION: LIFE-CYCLES AND WORKFLOWS

Libraries, archivists, curators and others working in the realm of digital preservation have
become accustomed to thinking about the long-term care of bits in ways that emphasize
activity rather than storage. Metaphors such as "life-cycle management" and "workflows"
express both an understanding of the multi-faceted nature of the process and a commitment to
the lifetime -- or more accurately, lifetimes - of effort involved. The most influential statement
of this approach has been the Curation Lifecycle Model of the Digital Curation Centre. The
DCC describes its model as a "graphical, high-level overview of the stages required for
successful curation and preservation of data from initial conceptualization or receipt through
the iterative curation cycle." Selection, ingest and storage generally are one-time actions that
occur in a fixed sequence, while assignment of metadata, tools development and
administrative actions such as auditing and migration are likely to be repeated throughout the
life-cycle. Thus the model encompasses both a linear sequence of work stages and the cyclic
repetition of specific tasks.

Metaphors of life-cycle and workflow bring the continuous nature of institutional commitments
to software preservation into focus. These commitments are long-term and repetitive, and
they require planning and infrastructure. From the perspective of digital curation understood
as data preservation, software preservation fits more or less neatly into the model offered by
the DCC and the workflows developed for ingest, storage, and auditing of digital objects.
For a collection curator such as myself, recent progress towards long-term preservation
solutions has been both necessary and exciting. Equally important aspects of collection
management around access to and delivery of digital assets have received relatively sparse
attention. How researchers will actually put their hands and eyes on historical software and
data collections generally has been bracketed out of data curation models focused on
preservation. The National Archives of Australia has described digital preservation as a "four
step process" leading from "manifest" (selection of records) through preservation and storage.
The process focuses on integrity and auditing of these records, but the description of it gives
no indication that the authors considered likely use scenarios or issues of access to them. The
DCC locates the life-cycle action identified as "access, use and reuse" in the sequential
workflow between "store" and "transform.” A "curation checklist" for this action provides
general guidance: Know what you expect users to do with the data, understand and
communicate the data's significant properties, formulate and enforce restrictions on use, and
provide contexts for search and use. Yet, the DCC also provides little in the way of specific
information about the development of use cases and how to account for them. Similarly, Ross
Harvey's authoritative Digital Curation: A How-To-Do-It Manual (New York and London: Neil
Schuman, 2004) acknowledges the need to manage data in a fashion that accounts for

Preserving.exe

Page 5

designated user communities, but without offering cases of discovery, use and access. The
motto of the DCC hints at the rationale for limiting the life-cycle model to data preservation
activities: "Because good research needs good data."

This essay is not a critique of digital curation. The work described above is the conceptual
bedrock upon which institutional data stores and repositories, preservation activities and
digital archiving programs have been constructed. The accomplishments are adding up as
capacity and functionality is developed, tested, and switched on-line. Rather than as criticism,
think of this essay as a reminder that we still have a few unchecked boxes on our to-do list:
description, metadata creation, access and delivery mechanisms. I am merely stating the
obvious. Success in providing good data means that we must account for good research that
(and good researchers who) will use these data. Thinking about how digital collections will
support research in software history is a good place to start.

SOFTWARE USE CASES
So, how can we productively shift some of our attention to access and use? A good place to
begin is use cases. The term historically has been closely tied to software development. Lore
has it - and an analysis using Google's Ngram Viewer supports the claim - that its consistent
use begins with Ivar Jacobson's Object-Oriented Software Engineering: A Use Case Driven
Approach (New York: ACM, 1992). According to Alistair Cockburn, a key popularizer of use
cases, Jacobson began using the term by the mid-1980s to describe his approach to software
engineering. In “Use Cases, Ten Years Later” (STQE Magazine, March/April 2002), Cockburn
defines the use case as "a prose description of a system’s behavior when interacting with the
outside world." In other words, the use case tells the software designer what happens when a
particular kind of user interacts with a software system. It is, as Cockburn emphasizes, a
"scenario of behavior."

Jeff Rothenberg gave us the Mother of All Use Cases for software preservation in "Ensuring
the Longevity of Digital Documents," the influential article he published in Scientific America in
1995:

"The year is 2045, and my grandchildren (as yet unborn) are exploring the attic of my house
(as yet unbought). They nd a letter dated 1995 and a CD-ROM. The letter says the disk
contains a document that provides the key to obtaining my fortune (as yet unearned). My
grandchildren are understandably excited, but they have never before seen a CD—except in
old movies. Even if they can nd a suitable disk drive, how will they run the software
necessary to interpret what is on the disk? How can they read my obsolete digital document?"
(Jan. 1995, 42.)

Note that Rothenberg shifts the meaning of "use case" by profiling user need rather than the
user's interaction with a system. It is a use scenario. Rothenberg's scenario introduced readers
to the problem of preserving digital files in a manner that future generations would find
usable. His essay deserves credit for opening the conversation on data migration, encoding of
bit streams, and preservation of representation and contextual information. It is instructive to
note as well that the conclusions Rothenberg drew in his article were based on specific ideas
about how digital documents would be used. If word processing documents were reduced to
text, what would be the implications of lost formatting instructions? If the functioning of
software programs could not be replicated, what would be the effects on the rendering of
document files? While Rothenberg focused on "reading" documents encoded in bit streams,

Preserving.exe

Page 6

we can of course imagine similar potential needs for other kinds of historical data and
software. As repositories of historical software plan for access, use cases both as scenarios
and descriptions of system behaviors will shape expectations about the technologies and
services required to deliver digital collections to researchers.

Since the mid-1980s, I have been involved through a succession of activities in the history of
computing, development of historical archives and collections to document that history, and
digital game studies. Specific milestones in the progression of my thinking about historical
software collections include the first conference on the topic at the Arden Conference Center
around 1990, the National Software Archives group led by David Allison of the Smithsonian
Institution in the mid-1990s, and the Software Task Force of the Charles Babbage Institute,
which issued its Final Report in 1998. The How They Got Game project at Stanford - which I
have led or co-led since 2000 - participated in both of the two Preserving Virtual Worlds
(PVW) projects funded by the Library of Congress and Institute for Museum and Library
Services, respectively, from 2007 through 2012. With PVW, the leading edge moved from
archival records to preservation of digital objects such as software. In retrospect, it seems to
me that PVW followed the sensible trajectory of problems that led from scoping work on the
description, selection and ingest of game software, electronic literature, and virtual world
data to an investigation of how better understanding of significant properties might inform
preservation, management, and auditing of software collections.

While these projects were underway, the Stanford Libraries (where I work) participated in a
string of digital library projects (including AIMS and several NDIIPP projects) and launched
new services, such as the Stanford Digital Repository and our Forensics Lab. In short, the pace
of work in digital repository development has been accelerating, especially over the past
decade. Stanford currently is involved in a partnership with the National Institute of
Standards and Technology to migrate data from our largest collection of historical software:
The Stephen M. Cabrinety Collection in the History of Microcomputing.

Connecting the dots from archives of software history to the PVW work and the progress in
repository development has led me and several of my colleagues to conclude that we have
reached a high level of competence in grabbing and storing data, but we have not
accomplished nearly as much to create an infrastructure, workflow or policies for providing
access to these data. For example, we lack metadata schema, terminology and ontology for
interactive software, we have many issues to work out with respect to rights management, and
there is still work to be done in evaluating the implications of technical options for executing
historical software.

It is time to begin the conversation about access. Of course, we have the good fortune of
having at our disposal technology, workflows and capacity for capturing, storing and
migrating digital materials. Repositories have been launched and significant collections have
been ingested by them. It is encouraging to see so much activity on one end of the life-cycle.
In thinking about the other end, I have kept three points in mind about building systems for
handling access: (1) How we plan for these systems will be guided by an understanding of
use cases and the paradigms that we build out of these scenarios; (2) traditional curation
activities (selection, collection, and provision of access to software and other digital objects) is
deeply invested in the new digital curation (ingest, preservation, auditing, management, tools
development); and (3) scenarios for research use of software libraries must take account of
archival documentation that provides context and meaning for digital libraries.

Preserving.exe

Page 7

USE CASES AND THE THREE LURES

I would love to give you a beautifully developed set of compelling use cases. Unfortunately,
such a set does not exist. Certainly, the projects mentioned earlier, my own research and
collection uses with which I am familiar provide a bunch of use examples, but the sum of these
experiences is more anecdotal than systematic; again, we are still in the early days of access
to digital collections. Instead of claiming to deliver the canonical use cases, I will offer a few
thoughts about potential pitfalls for the imagining of these scenarios. The idea is not to
criticize work that has taken place. It is too early for that. In fact, it would thrill me if my
concerns turn out to be straw men, meaning that when we look backwards in a few years, we
will see that these problems never existed.

My first inclination was to call these pitfalls "sirens" or "siren songs." The sirens, of course,
were mythical creatures whose singing lured ancient seamen to their death. The mental image
of Odysseus preparing his crew to resist these temptations has some appeal as a metaphor
for certain ideas about playback and experience of historical software that might lead digital
repositories astray. However, the associative baggage of connecting this metaphor to notions
of feminine seduction and deception is not appealing, particularly when writing about subjects
with as many historical issues around inclusivity as digital games and computer programming.
Instead, I will refer to the lures of historical software use. A lure, according to the Oxford
Dictionary, is "something that tempts or is used to tempt a person or animal to do something."
It is allied with words like trap and bait and thus fits nicely with the previously employed
"pitfall." Problem solved. The three lures I have in mind are "the screen," "the authentic
experience" and "the executable." Tempting ideas about access to and use of historical
software collections have been constructed around each of them.

The Lure of the Screen

The lure of the screen is related to what media studies scholars such as Nick Montfort, Mark
Sample and Matt Kirschenbaum have dubbed (in various but related contexts) "screen
essentialism." In an extremely general and simplistic form screen essentialism means that what
counts in digital media is what is on the screen. With respect to software preservation, the
more general idea is that the significant properties of software are surface properties. These
are properties that we perceive as being generated by our interaction with software:
graphics, audio, responses to our use of controllers and so on. Besides being the properties
that users perceive and manipulate, they are arguably the properties that designers consider
as the focus of user interaction and the properties that are easiest to inspect and verify in a
repository if software executes successfully.

The second Preserving Virtual Worlds project was concerned primarily with identifying
significant properties of interactive game software. The potential value of significant
properties research for digital media preservation lies in its application to tasks ranging from
strategic planning to auditing whether changes have occurred in digital objects over time.
According to the InSPECT report (Knight, 2009), these properties tell us which characteristics of
digital objects "must be preserved over time in order to ensure the continued accessibility,
usability, and meaning of the objects, and their capacity to be accepted as evidence of what
they purport to record." On the basis of several case sets and interviews with developers and
other stake-holders, PVW2 came to the conclusion that isolating surface properties such as
image colorspace, while significant for other media such as static images, was not a
particularly useful approach to take for game software. With interactive software,
significance appears to be variable and contextual, as one would expect from a medium in

Preserving.exe

Page 8

which content is expressed through a mixture of design and play, procedurality and
emergence. With respect to surface properties in particular, software abstraction levels are
not “visible” on the surface of play. It is difficult if not impossible to identify and monitor
significant procedural aspects of game design and mechanics, programming and technology
simply by inspecting properties expressed on the screen.

 As with other media, it is unlikely that software will be preserved without changes in
interactivity and appearance, which is why we try to understand significant properties. It turns
out to be quite difficult to predict which characteristics will be considered significant by future
researchers. An alternative or companion approach for auditing the operation of a historical
software program might be to verify the execution of data files. The integrity of the original
software can always be evaluated by comparison to documented disk images or file
signatures such as hashes or checksums. However, when data migration or delivery
environments call for changes to the software, we need to evaluate the performance of the
resulting code. Instead of asking whether the software "looks right," we might first test
whether it runs verified data-sets that meet the specifications of the original software.
Examples of the external files that software is expected to accept as data range from word
processing documents to saved game and replay files. Of course, visual inspection of the
content will sometimes be necessary to verify execution by the software engine; failure will not
always be indicated by crashes or error messages, but may only be evident when formatting
does not look right or audio will not play. Questioning screen essentialism is not a complete
rejection of the relevance of surface properties for preservation activities. Nevertheless, I
expect that workflows built around testing of data execution will be more scalable and more
easily assigned to machines than a system that relies on analysis of what is seen on the screen.

The Lure of the Authentic Experience

Everyone in game or software studies has worked with emulators or at least has read or
heard about emulation (including display emulation), virtualization, or physical reconstruction
of components such as controllers and cabinets. Many if not most emulation projects struggle
to recreate an authentic experience of operating a piece of software or playing a digital
game. The yardstick for measuring authenticity is generally taken to be the experience of
using historical hardware and software. Note that this measure is in sympathy with an
emphasis on surface characteristics as significant properties. The Lure of the Authentic
Experience then is a mandate that digital repositories at minimum must be careful not to
preserve digital objects in a manner that would interfere with the production of such
experiences. At maximum, repositories would be expected to provide "reading room" access
models that deliver these experiences on-site. In the minimum case, the repository might need
to collect hardware specifications, drivers or support programs that account for interfaces
between, say, game software and original hardware components such as displays, and
controllers. If these are lost, it may be difficult or even impossible to reconstruct the
information needed to provide a reconstruction of the historical look-and-feel of a program.
In the maximum case, the repository designs and builds authentic access environments and
provides access to them - a service that probably requires that researchers travel to the
repository to use historical or bespoke hardware. Some notion of authenticity exists for any
medium, of course. In some cases, it focuses on objects (such as the difference between a rare
manuscript and a modern reproduction of it) and in others on environments in which the
medium is experienced (such as the difference between viewing a movie in a theater or at
home on YouTube).

Preserving.exe

Page 9

Debunking the Lure of the Authentic Experience is not a comfortable thing to do. Authenticity
is a concept fraught with emotional and intellectual issues, ranging from nostalgia and fandom
to disagreements about essential methodologies in fields such as history of technology, media
archaeology, or critical media studies. It is a minefield, but I will try to sum up a few of the
issues without stepping on too many mines. The first problem is perhaps an academic point,
but nonetheless important: Authenticity is not given to us, it is constructed. Put another way,
whose actual experience counts as "authentic" and how is it documented? Is the best source a
developer's design notes? The memory of someone who used the software at the time it was
released? A marketing video issued by the publisher? The researcher’s self-reflexive use in a
library or museum? In the case of software with a long history, such as the game Breakout or
the application program Microsoft Word, how do we account for the fact that the software
was used on a variety of platforms - do repositories have to account for all of them? And
what do we do if sources conflict or the software is capable of being used in a variety of
ways? For example, we might consider that an authentic way of playing a multiplayer "death
match" with the early first-person shooter DOOM would require peer-to-peer networking
using a local area network, a mouse-and-keyboard control configuration and a CRT display.
In fact, there are documented cases of competitive play with different arrangements of
hardware: track-balls, programs or ports that enabled Internet-based multiplayer via TCP-IP,
monitors of various shapes and sizes, and so on. Which differences matter? We can extend
this logic to home computers and game consoles of the 1980s - every television was not a
color television, for example.

Another problem with the Authentic Experience is that often it is just not that useful to the
researcher; it may not be the most useful way to understand historical software in execution.
Nick Montfort showed attendees at the preserving.exe conference that even when an
emulated version of a software program is not used with historically authentic display and
control hardware, the emulator interface compensates by offering real-time information about
system states and code execution. The trade-off for losing the experience is that fresh insights
might emerge from data about the underlying mechanisms of the software once they are
made visible. We might generalize from such observations to ask what kinds of questions
researchers such as historians of technology, practitioners of code studies or game scholars are
likely to ask about historical software. While I do not have a crystal ball at hand, my guess is
that for most researchers documentation of historical use of software is a more valid source
than a personal experience somehow deemed authentic. This is not to say that engagement
with artifacts - both physical and "virtual" - will not be a necessary part of the research
process. It is difficult to imagine how a full appreciation of historical software design could be
gained without some appreciation for the constraints and affordances of original hardware,
for example. It seems likely that access to original technology will have a role to play in
gaining that appreciation. Surprisingly perhaps, some studies (Margaret Hedstrom's work, in
particular) suggest that current users prefer reworked or updated experiences of historical
software. There is also anecdotal evidence from museum and other exhibitions that visitors
who did not grow up with historical computer technology prefer to use and experience
updated versions. In light of these various observations, it is difficult to argue that a digital
repository should be preoccupied with delivery of the Authentic Experience as part of its core
mission. A better use of limited resources would be to insure that validated software artifacts
and associated contextual information are available to researchers who are inclined to do this
work on a case-by-case basis. Put bluntly, digital repositories should consider the Authentic
Experience as more of a reference-point than a deliverable, as a research problem rather
than a repository problem.

Preserving.exe

Page 10

The Lure of the Executable

An attractive version of the end-product of software preservation is the library of executable
historical software. The work to reach that product involves a series of tasks from selection
and collection through ingest and migration from original media and creation of technical and
rights metadata, as well as provenance, descriptive and contextual information. This workflow
is at the heart of the life-cycle model. While the model says little about related physical
components such as packaging, manuals and box inserts, this can be considered as a separate
archiving problem and as projects at the Strong Museum, University of Texas, Stanford
University and elsewhere indicate, this work is underway. The point for software preservation
is that the Lure of the Executable compels digital repositories to focus without distraction on
building collections of verified historical software that can be executed on-demand by
researchers. This has been the Holy Grail of digital curation with respect to software history.

What could possibly be wrong with this mission, assuming that it can be executed? As I have
argued on other occasions there are at least three problems with focusing primarily on the
software library. Fortunately, they are problems of omission, rather than commission. The first
problem is that software does not tell the user very much about how it has previously been
used. In the best case, such as previously installed software available in its original use
environment (not a common occurrence), application software might display a record of files
created by users, such as a list of recently opened files found in many productivity titles like
Microsoft Office. The more typical case for a software library however will be that software
is freshly installed from the library and thus completely lacking any information about
historical use.

The second point might best be illustrated through the example of virtual world software, such
as Second Life or a game world such as World of Warcraft. Let us assume that we can
capture every bit of historical data from a virtual world server and then successfully
synchronize all of this data with carefully installed (and patched) software, we can reverse
engineer authentication controls, and we can solve the complex problems of ownership and
rights. We will have accomplished an act of perfect software and data capture, and of
course we will then preserve all of the associated digital objects. Now we can create a
historical time machine through which we can fly through the virtual world at any moment in
time of its existence. Of course, historians would applaud this effort, until it becomes evident
that all we can do is watch. In the absence of historical documentation that helps the
researcher to understand motivations and reactions of the participants, the pay-off will be
limited. Content without context.

The third point and perhaps the most fundamental is that the documentation that is a
prerequisite for future historical studies of software and digital media such as games and
virtual worlds is simply not located in software. It is, in a sense, on both sides of software: the
design materials (including source code) that document software development and the
archives, both digital and non-digital, that document context, use and reception. It is
important to understand that this is not just a problem for historical research. It is also a
problem for repositories, whether they are doing the work of digital preservation or
addressing the needs of a researcher requesting access to this software. If contextual
information such as software dependencies or descriptions of relationships among objects is
not available to the repository and all the retired software engineers who knew the software
inside-and-out are gone – it may be impossible to get old software to run.

Preserving.exe

Page 11

In Best Before: Videogames, Supersession and Obsolescence, James Newman argues that a host
of publishing, retail, marketing, journalistic and other practices have cultivated a situation "in
which the new is decisively privileged and promoted and the old is constructed either as a
benchmark by which to measure the progress of the current and forthcoming 'generation' or as
a comprehensively worn out, obsolete anachronism to be supplanted by its update, superior
remake or replacement." (p. 121). Newman is not optimistic about software preservation.
This does not mean that he is pessimistic about every possibility for historical preservation,
however. In a section of his book provocatively called "Let Videogames Die," he argues that
a documentary approach to gameplay might be a more pragmatic enterprise than the effort
to preserve playable games. It represents a "shift away from conceiving of play as the
outcome of preservation to a position that acknowledges play as an indivisible part of the
object of preservation." (p. 160) Stated more generally, software preservation is not simply
about preserving historical software for use as a research act, but also about preservation of
documentation about historical use. This does not mean that the Lure of the Executable is a
false idol, but rather that the Library of Executable Software is only a partial solution to the
problem of software preservation.

CONCLUSION: IS RESISTANCE FUTILE?

At the end of the day - or more likely, at the end of several thousand more days - repositories
may find it difficult to resist the three lures. After all, the purpose of providing access to
historical software collections will be to enable researchers to understand how software
worked, the intentions of software designers, and the affordances and experiences offered to
software users. Of course, lures are called lures for a reason: They are shiny and attractive,
and they reel us in. Moreover, the lures I have identified are not misguided goals. Obviously,
there will be situations in which repositories should make it possible for researchers and other
users to make an accurate assessment of surface characteristics, run the software, experience
using it, and appreciate the content created for it. Notice the hedge here? No repository has
unlimited resources (funds, technology, expertise) and therefore it is a given that every
repository's provisions for use cases that meet specific goals will be situational, that is,
contingent and selective. The challenge for the institutional turn from ingest and storage to
access and use will be to understand the difference between scalable core workflows that
apply to collections as a whole and special scenarios that require specific tools and services
evaluated on a case-by-case basis. I hope that a good understanding of the difference
between "core" and "special" will gradually emerge from a conversation among collection
curators, digital preservation teams, and interested users. The participation of each of these
parties - one of the signal characteristics of the Library of Congress's preserving.exe meeting -
will be essential as digital repositories work with researchers to understand software as
technology, text and system in all of its conditions and contexts.

Preserving.exe

Page 12

An Executable Past: The
Case for a National
Software Registry
M A T T H E W K I R S C H E N B A U M , A S S O C I A T E P R O F E S S O R ,
D E PA R T M E N T O F E N G L I S H , A S S O C I A T E D I R E C T O R M A RY L A N D
I N S T I T U T E F O R T E C H N O L O G Y I N T H E H U M A N I T E S , U N I V E R S I T Y
O F M A RY L A N D

You are standing at the end of a road before a small brick building.

Stark words flashed across the network’s broadcast channel, like that annual decree
going out from Caesar Augustus. Like the first four measures of “Auld Lang Syne.” Like
the face of a friend bobbing out from a crowd just clearing International Customs, lit in
familiarity’s halo.

[. . .]

Around you is a forest. A small stream flows out of the building and down a gully.

The words filled Jackdaw with a great sense of well-being. Happiness flowed in its own
small stream out of Jackdaw’s chest and down into his typing digits.

These sentences are from Richard Powers’ novel Plowing the Dark (2000).1 The scene, which
comes early in the book, has one of its protagonists, a computer programmer and game
designer named Jackdaw, sitting in front of his networked terminal during a late-night work
session. Someone else posts the opening lines of the text adventure Colossal Cave, and dozens
of the system’s denizens begin a call and response real-time recreation of a game they have
all played, using words they all know to describe a place they have all visited, a fantastic
place that was formative in their decision to become what they now are.

Colossal Cave Adventure was the original “text adventure” or “interactive fiction,”
programmed by Will Crowther in FORTRAN on a PDP-10 at BBN in 1975, and expanded a
year or so later by Don Woods at Stanford’s AI Lab. Thereafter it was ported across almost
every platform and operating system imaginable. (I first played Adventure in the early
eighties on my family’s Apple IIe.) As the game’s text scrolls by, Jackdaw reminisces about his
own childhood encounter with it over a Tymeshare 300-baud modem. And the emotions ring
true: Colossal Cave was the work that exposed countless young programmers to the
possibilities of creating in virtual space, its puzzles and famous “twisty little passages”
elevating the experience of coding and debugging to world-making.

Powers’ testament to the role of software in our collective memory is no less compelling for its
occurring amid a work of fiction. Indeed, consider this: one of our foremost living novelists can
knowingly make reference to a twenty-five year-old computer program and be able to count
on his audience’s powers of identification, just as he would for a mention of a famous painting,
film, song, or book. Today you can play Adventure on the Web, and you can play it on your

1 See chapter 16 of the novel.

Preserving.exe

Page 13

phone. But while Adventure itself is widely available, some of the most basic facts about its
creation and history have proven surprisingly elusive. Dennis Jerz, who has done the definitive
scholarly detective work on the game’s history, notes the widely varying dates that authors
and journalists had previously given for its creation, the range spanning the better part of a
decade.2 (That a book or film of any significant cultural import from the latter half of the
twentieth century would routinely have its release date misrepresented by such a margin
seems inconceivable.) Likewise, the source code for Crowther’s original version of the game—
before the modifications from Woods—was only recently recovered by Jerz, through a chain
of improbable but fortuitous events involving discovery of backup tapes of Woods’ original
SAIL account, which contained as yet unmodified source files for the game sent by Crowther.
This feat was the equivalent of locating an author’s manuscript or a film negative, and analysis
of the source code significantly revised our understanding of the game, particularly Crowther’s
original intentions for it—more ambitious then he was typically given credit for. Unlike a
literary manuscript or a film master, however, there was no culturally sanctioned depository or
repository, no library or archives to bequeath with the newly recovered source code.3 Like
Adventure itself, it now simply circulates on the open internet.

Despite the obviously deep emotional resonance we are therefore capable of attaching to
computer software, we have generally yet to commit to the scholarly standards, the public
infrastructure and institutions, and the individual habits of mind necessary to document its
creation and impact as completely and accurately as we do other kinds of cultural artifacts.
Here the most basic facts about a computer program that influenced an entire generation
might have remained obscure but for the efforts of a single dedicated scholar. And while
games might seem like the most replete conduits for channeling such depths of feeling, even
seemingly mundane applications, designed for home or office productivity, can elicit strong
emotional responses. Precisely because it is always evolving and always obsolescing, we
associate specific software packages with different eras in our lives. Nostalgia for WordStar
or WordPerfect isn’t just nostalgia for the program it’s also a touchstone (or synecdoche) for
the 1980s, for MTV and the Challenger and Reagan and Gorbachev and all the rest. Perhaps
you were sitting in your office immersed in some task in WordPerfect or Lotus 1-2-3 when you
heard the Space Shuttle exploded one winter morning in 1986, maybe just as your thoughts
were turning towards lunch—that scenario is surely true for many thousands of people.

But there’s considerably more at stake than just personal nostalgia. New software is not
created ex nihilo. The software of today has both an artistic and a functional genealogy to
concepts, prototypes, and programs that are now many decades old (Douglas Engblebart’s
1968 NLS demo, which showcased the mouse, the graphical user interface, and hyperlinks is
often invoked in this context). Yet beyond a handful of well-known exemplars—Englebart’s
NLS, Vannevar Bush’s Memex, Alan Kay’s Dynabook, Ted Nelson’s Xanadu—much of this
pioneering work is increasingly difficult to recapture. Lev Manovich, who is generally credited
with having inaugurated the academic field of “software studies,” recently published a book
about the early history of multimedia. That project, which is exactly what we should expect
from a scholar of the computer age, presented considerable practical difficulties at the level
of locating primary sources:

2 See Jerz, “Somewhere Nearby is Colossal Cave: Examining Will Crowther's Original "Adventure" in
Code and in Kentucky,” Digital Humanities Quarterly 1.2 (2007):
http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html.
3 However the source files for Crowther’s original version of Adventure were included in the materials
archived by the Preserving Virtual Worlds project in institutional repositories at the University of Illinois
and Stanford. See PVW’s final report for more detail: https://www.ideals.illinois.edu/handle/2142/17097.

http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.html
https://www.ideals.illinois.edu/handle/2142/17097

Preserving.exe

Page 14

While I was doing this research, I was shocked to realize how little visual documentation of
the key systems and software (Sketchpad, Xerox Parc's Alto, first paint programs from
late 1960s and 1970s) exists. We have original articles published about these systems
with small black-and-white illustrations, and just a few low resolution film clips. And nothing
else. None of the historically important systems exist in emulation, so you can't get a
feeling of what it was like to use them.

This situation is quite different with other media technologies. You can go to a film museum
and experience the real Panoroma from early 1840s, camera obscura, or another pre-
cinematic technology. Painters today use the same "new media" as Impressionists in the
1870s—paints in tubes. With computer systems, most of the ideas behind contemporary
media software come directly from the 1960s and 1970s—but the original systems are
not accessible. Given the number of artists and programmers working today in "software
art" and "creative coding," it should be possible to create emulations of at least a few
most fundamental early systems. It's good to take care of your parents!4

Just as early filmmakers couldn’t have predicted the level of ongoing interest in their work
over a hundred years later, who can say what future generations will find important to know
and preserve about the early history of software? (Jerz has established through interviews
that Crowther originally designed Adventure thinking it was just a game for his children and a
few friends to enjoy.)

It is certainly plausible, indeed inevitable, that future scholars like Manovich and Jerz will want
to continue to research software for the sake of its history; but, as Powers’ novelistic example
makes clear, academics, journalists, and the public at large are going to need to know
specifics about long-antiquated software as they pursue inquiries involving persons and events
from any number of domains—literature, history, the visual and performing arts, government,
business, science, medicine, anthropology, musicology, media—from any time from the latter
half of the twentieth century forward. Software, after all, is more than just a tool or even a
technology; different software packages create the conditions for productivity and creativity
in all these many different domains through their individual capabilities, limitations,
engineering, and design. Finally, the software industry itself has perhaps the greatest stake in
securing the history of its own past practices, both as a source of ongoing inspiration and as a
record of its impact on human society. At what point then does responsibility for ensuring the
archival basis for such a history pass from individual scholars, collectors, and enthusiasts—or
corporate archives which are generally closed to outsiders—to our public institutions and the
national public interest?

* * *

“Software,” the Yale computer science professor David Gelernter has said, “is stuff unlike any
other.”5 But what is software then, really? Is it the source code or the compiled binary? (Of
course the former is often a legally protected trade secret.) Is it the underlying math and
algorithms, or is it the high-level languages in which these are expressed? Is it just the code or
is it also the shrink-wrapped artifact, complete with artwork, documentation, and “feelies,”
that is extras like faux maps or letters that would become part of the play of a game (see
figure 1)? Is it the program or the operating system? What about the hardware? The
firmware? What about controllers and other peripherals integral to the experience of a given
piece of software? How to handle all the different versions and iterations of software
(Adventure exists in many dozens)? What about fan-generated add-ons like mods and

4 The book is Manovich’s Software Takes Command, Bloomsbury Academic, 2013. See
http://rhizome.org/editorial/2013/jul/10/lev-manovich-interview/ for the interview.
5 In Gelernter’s Machine Beauty: Elegance and the Heart of Technology, Basic Books, 1998, p. 22.

Preserving.exe

macros? What about discussion boards and strategy guides and blogs and cheat sheets, all of
which capture the lively user communities around software? What about industrial and
enterprise software? What about the software in your car or on a 777? What about software
that comes to you nowadays as a service, like YouTube and Twitter? What about mobile
apps?

Figure 1. “Feelies” that came with John McDaid’s Uncle Buddy’s Phantom Funouse (Eastgate 1992), an early
example of electronic literature. They are integral to the experience of the work. Source: http://dtc-

wsuv.org/wp/pathfinders/files/2013/08/ubpf-box.jpg

Underlying all of these questions is the more fundamental one of what it means to think of
software as a human artifact, a made thing, tangible and present for all of its supposed
virtual ineffability. Scott Rosenberg, who has written a masterful firsthand account of an
ultimately failed software development project, puts it this way: “Bridges are, with
skyscrapers and dams and similar monumental structures, the visual representation of our
technical mastery over the physical universe. In the past half century software has emerged as
an invisible yet pervasive counterpart to such world-shaping human artifacts.”6 Similarly,
computer historian Martin Campbell-Kelly has observed that software is characterized by
both its invisibility and its universality.7 On the one hand, seemingly innumerable daily actions
are now governed by software, whose variety far exceeds that of mere desktop applications
(your phone, your car, the traffic lights you stop your car at, the keycard you swipe to enter
your workplace; even your coffeemaker may contain software). On the other hand, there is no
way to see software—most of us just interact with a user interface or, for the developer, the
high-level linguistic abstraction dubbed “source code.” But this does not mean that a given
piece of software does not have a history, nor does it mean that it’s immaterial, that is bereft
of the distinctive qualities we associate with more tangible artifacts.

The history and materiality of software can be tracked in numerous ways: its representation in
popular culture or a novel like Powers’ for example, or else in films. The movie adaptations of
Stieg Larsson’s Millennium series are notable for their realistic depictions of the software tools
the characters use on their computers, while many Hollywood blockbusters give us fanciful and
extravagant renditions of software that bear little resemblance to real-world programs. That
there are different approaches to representing software in filmmaking speaks to its status as
a cultural artifact. Shifting legal opinions around software—its status as expression, object,
and commodity—offer another critical window onto societal understandings of what software

6 In Dreaming in Code, Crown Publishers, 2007, p. 8. The failed project was “Chandler,” conceived by
Mitch Kapor as a successor to Lotus Notes.

Page 15

7 See From Airline Reservations to Sonic the Hedgehog: A History of the Software Industry, MIT Press,
2003.

Preserving.exe

is (or should be). Campbell-Kelly singles out 1969, when IBM was threatened with an antitrust
action, as the moment in the US industry when software became commercially distinguishable
from hardware, through what was known as the “unbundling” decision. A similar antitrust suit
would later arise around Microsoft’s bundling of Internet Explorer with its Windows operating
system; this time the distinction was between the desktop and the Web. Sometimes software
even embeds its own history: Microsoft Word 2.0, released in 1991 at the height of the so-
called “word wars” between rival word processing applications, contains an Easter egg (a
hidden program feature) that displays an animation of Microsoft coders slaying the
“WordPerfect monster” (figure 2). Though seemingly a throwaway gesture, this hidden feature
speaks directly to the material element in software, that is the passions, high stakes, and
ultimately the humanity (and even humor) that informs it.

Figure 2. Easter egg activated by a Macro in Word 2.0, illustrating the rivalry with the “W.P.” monster.
Source: http://www.eeggs.com/images/items/950.full.jpg

Such Easter eggs are not uncommon; indeed, one of the most famous is to be found in Warren
Robinett’s graphical adaptation of Crowther and Woods’ Adventure for the popular Atari
2600 platform (1979). As others have argued, this was an important and innovative game,
establishing many of the conventions we use to depict virtual space today (such as exiting a
“room” through one side of the screen, and emerging in a logically adjoining room on a new
screen).8 At the time Atari’s programmers were not credited in the documentation for any of
the games they worked on, so Robinett created an Easter egg that allowed a player to
display his name on the screen by finding and transporting an all but invisible one-pixel object
(see figure 3).

Page 16

8 See Nick Montfort and Ian Bogost, Racing the Beam: The Atari Video Computer System, MIT Press, 2009
for a thorough discussion of Atari Adventure’s technical and creative innovations.

Preserving.exe

Figure 3. Programmer Warren Robinett’s Easter egg in Adventure for the Atari 2600. Source:
http://en.wikipedia.org/wiki/File:Adventure_Easteregg.PNG

Word of such features would circulate as folklore in the player communities and be passed
along in newsletters or (later) on computer bulletin boards. Again, this seemingly slight gesture
in fact speaks volumes about shifting attitudes towards software as a cultural artifact. Does
“code” have authors? Is software “written” the way we write a book? Nowadays, of course, it
is commonplace for programmers to be acknowledged and credited in the software they
write, but at the time it required a surreptitious intervention.

We tend to conceptualize software and communicate about it using very tangible metaphors.
“Let’s fork that build.” “Do you have the patch?” “We can use these libraries.” “What’s the
code base?” Software may be stuff unlike any other, but it is still a thing, indisputably there as
a logical, spatial, and imaginative artifact, subject to craft and technique, to error and human
foible. Ellen Ullman, who has produced one of our indispensable non-fiction accounts of
software development as well as a novel entitled The Bug, makes this very point in an
interview:

We have always wanted to rationalize the process of writing software, to have it share the great
advances in process engineering that have taken place in manufacturing. We like to talk about
software as if it were hardware: we call it a “build”; we talk about “components” and
“assemblies.” But there is a real heart of chaos in all this. Human beings just do not think and
operate like machines, and the ways of human knowledge and understanding do not translate
easily or quickly into computer code. That’s why most programmers are so wired: there’s something
obsessional about having to translate the rush of thought into line-by-line statements.9

The notion of translating a “rush of thought” into logical, linear statements captures the essence
of software development. The languages that software is written in are, after all, active
languages. They are languages that are meant to be executed: compiled, run, and resulting in
an outcome that captures the programmer’s vision. (The key distinction is between source code,
typically written in a so-called “high level” language like BASIC or Java, and object code,
which is the source “translated” to the arithmetically executable 1s and 0s of the computer.) To
Campbell-Kelly’s core qualities of universality and invisibility then, we must also add
executability. A “piece” of software is not an inert or a passive artifact. It is an active and
dynamic one, a set of notations and instructions more akin to a musical score than to a painting
or even a literary text. Thomas Scoville gives us a striking account of a programmer who
conceives of his coding as akin to conducting a jazz ensemble:

Page 17

9 Interview with Ellen Ullman, “Of Machines, Methods and Madness,” IEEE Software (May/June 1998).
The non-fiction account is Close to the Machine: Technophilia and its Discontents, City Lights, 1997. It is
based on her first-hand experiences working as a software developer in San Francisco.

Preserving.exe

Page 18

Steve had started by thumping down the cursor in the editor and riffing. It was all jazz to
him. He could feel the machine sing through his fingers. . . . The first day he built a
rudimentary device-driver; it was kind of like a back-beat. Day two he built some routines
for data storage and abstraction; that was the bass line. Today he had rounded out the
rhythm section with a compact, packet-based communication protocol handler. Now he was
finishing up with the cool, wailing harmonies of the top-level control loops.10

Such lyrical accounts of the programmer’s craft are legion, and could be easily multiplied.
What they all have in common is testimony to the fact that writing a computer program is not
an abstract logical exercise; it is art and design, tradition and individual talent, and over time
the program takes shape as a wrought object, a made thing that represents one single
realization of concepts and ideas that could have been expressed and instantiated in any
number of other renderings. Software is thus best understood as an artifact: not some abstract
ephemeral essence, not even just as lines of written instructions or code, but as something that
builds up layers of tangible history through the years, something that contains stories and sub-
plots and dramatis personae. Programmers even have a name for the way in which software
tends to accrete as layers of sedimentary history, fossils and relics of past versions and
developmental dead-ends: cruft, a word every bit as textured as crust or dust and others
which refer to physical rinds and remainders. (Interestingly, the term has migrated from the
name of a physical place, Cruft Hall at Harvard University, to a name for the discarded
machinery and hardware components that were visible through the building’s windows to its
current usage in software development to describe left over code.)

Knowledge of the human past turns up in all kinds of unexpected places. Scholars of the
analog world have long known this (writing, after all, began as a form of accounting—would
the Sumerian scribes who incised cuneiform into wet clay have thought their angular
scratchings would have been of interest to a future age)? Software is no less expressive of the
environment around it than any object of material culture, no different in this way from the
shards collected and celebrated by anthropologist James Deetz in his seminal study of the
materiality of everyday life, In Small Things Forgotten. In the end one preserves software not
because its value to the future is obvious, but because its value cannot be known. If software is
the material manifestation of the universal machine that is the modern computer, then it ought,
in theory, to have universal—and unlimited—significance for our understanding of our own
past; a past that is not just “usable,” as the saying goes, but also, now literally executable.

* * *

The phrase “usable past” comes from a 1918 essay by the literary critic Van Wyck Brooks,
published as the United States was on the threshold of assuming its role on the world stage.11
A relic of an earnest cultural nationalism that now seems crude , it nonetheless spoke to a
desire to scour the country’s creative heritage for harbingers of a distinct American identity.
Institutions like the Library of Congress, the National Archives, and the Smithsonian have all
acted upon this vision in various ways, adapting and expanding as new media and new
modes of expression take hold in the public life of the nation.

Manovich’s comparisons to film history and the visual arts are thus effective in underscoring just
how impoverished our documentary efforts for software have been to date. Yet film
preservation itself is a notoriously volatile enterprise and would not always have seemed a
promising exemplar. By many estimates over 80% of the American films produced before

10 In Thomas Scoville, Silicon Follies: A Dot. Comedy, Atria Books, 2001, p. 72.
11 The full title of the essay is “On Creating a Usable Past.” It was first published in the Dial 64 (April 11,
1918).

Preserving.exe

Page 19

1930 are now lost—casualties of their volatile nitrate base. Today the Library of Congress’s
Packard Center for Audio-Visual Conservation (also known as the Culpeper facility) is charged
with the long-term safekeeping of the nation’s films, television programs, radio broadcasts,
and sound recordings—the largest audio and moving image collection in the world. For
decades the Library of Congress has also been receiving computer games, and in 2006 the
games became part of the collections at the Culpeper campus. But while the Library registers
the copyrights, what it means to preserve and restore vintage computer games—or any kind
of computer software—is less clear. As yet there is only the beginning of a national agenda
for software preservation, and precious little in the way of public awareness of the issue.12

In 1988 Congressional legislation established the National Film Registry, whose mission is to
preserve films deemed “culturally, historically, or aesthetically significant.”13 The timing was
not accidental. The colorization of classic films was becoming more commonplace, notably as a
result of Ted Turner’s acquisition of MGM’s catalog. For those titles entered in the Registry, the
legislation prohibited the distribution and public showing of any film colorized or otherwise
edited without explicit labeling indicating exactly what had been changed. Thus a key
mandate of the law was to ensure the fidelity of these films to their original versions, even as
technology allowed for ever more possibilities for enhancement.14

Should there be a National Software Registry (NSR) modeled on the same basic principles
and intentions? This suggestion was floated by Clifford Lynch and others at the Library of
Congress’s May 2013 Preserving.exe meeting.15 This essay argues that such suggestions
should be taken seriously. Like film, there is a general sense that an important class of cultural
artifact and expression is now imperiled. While software preservation may not necessarily
present any one single catalyst like colorization as the impetus for the creation of such a
registry, it is widely recognized that many different factors, from the degradation of physical
media to the obsolescence of the hardware and operating systems that create software’s
dependencies, are lending the issue urgency. Some might also wish to argue that while films
are vehicles of cultural and imaginative expression—stories and artworks that tell us about
ourselves—software is strictly utilitarian, a functional often commercial product that exists for
getting work done. Of course such utilitarian definitions immediately miss a whole range of
important software genres, notably games but also other forms of interactive storytelling and
digital art. This essay, however, has also tried to suggest why even so-called utilitarian
software benefits from being regarded as a cultural artifact and expression, a product of a
particular place and time with its own inherent stories and histories. And while it is true that
software is not nearly as neatly defined as film, it is important to remember that many of the
films now part of the Registry originated as other than traditional narratives. Also included
are early silent documentaries, slice-of-life and incidental footage; as well as home movies
(Dave Tatsuno’s Topaz and the Zapruder film), civil defense films, animation, experimental
film, and even music video (Michael Jackson’s “Thriller”).16 Software too has diverse genres,

12 For example, one might note that there is no mention of software or executable content in the NDSA’s
2014 National Agenda for Digital Stewardship: http://www.digitalpreservation.gov/ndsa/nationalagenda/.
13 H.R.4867, Public Law No: 100-446. The full text of the legislation is available here:
http://thomas.loc.gov/cgi-bin/bdquery/z?d100:HR04867:@@@L&summ2=m&
14 The National Film Registry’s online presence is here: http://www.loc.gov/film/.
15 The full title of the meeting was Towards a National Strategy for Preserving Software. See
http://www.digitalpreservation.gov/meetings/preservingsoftware2013.html the meeting’s agenda,
participants, and selected presentations and reporting.
16 The 2011 documentary These Amazing Shadows by Paul Mariano and Kurt Norton is an excellent
introduction to the history and contents of the National Film Registry.

http://www.digitalpreservation.gov/ndsa/nationalagenda/
http://thomas.loc.gov/cgi-bin/bdquery/z?d100:HR04867:@@@L&summ2=m&
http://www.loc.gov/film/
http://www.digitalpreservation.gov/meetings/preservingsoftware2013.html

Preserving.exe

Page 20

ranging from games to office productivity tools to utilities, middleware, and many others. It
cannot be essentialized as any one thing.

Titles are entered in the National Film Registry via a public nomination process and the
subsequent deliberations of the Library of Congress’s National Film Preservation Board. Films
must be at least ten years old to be eligible. While active measures are then taken to
preserve (and if necessary restore) the films thus selected, these tangible outcomes arguably
are subordinate to the simple power of the Registry to create public interest and awareness.
Lists, after all, are powerful focalizers for our collective attention. Lists of great films, great
books, and great albums are commonplace; even before the internet made list-making (and
critiquing) a popular pastime for many, publications such as the Book of Lists highlighted the
importance of lists as ways to consolidate opinion and knowledge. Thus the mere process of
amassing lists of software suitable for inclusion in a National Software Registry would serve to
focus public attention on the subject.17 Such lists have been made before. For example, in
2006 Henry Lowood, Warren Spector, Steve Meretzky, Matteo Bittanti, and Christopher
Grant compiled a “Game Canon,” a list of 10 computer games submitted to the Library of
Congress for preservation due to their cultural significance.18 While the choices were well-
considered and well-argued, the list, predictably, was highly contentious. This is as it should
be, and underscores the importance of balancing public opinion and expert consensus in any
decision making process. Lists tell us as much about the people who made them as they do the
items that inhabit them. The value of the selection process should not be underestimated, quite
apart from whatever practical measures are taken to preserve the software titles thus
selected: therefore the question of the creation of a National Software Registry should not be
dependent on the current state of the art in software preservation or the projected feasibility
of “preserving” any one specific title.

While the particulars of an National Software Registry’s governance and operating
principles—such as how many titles per year or whether there is a “waiting period” akin to
the ten years for the National Film Registry—are best left to others, as are considerations
related to its technical infrastructure and implementation, here are some guiding principles I
would put forward to help focus the issues where consensus would need to exist:

 An NSR should have as its most important criteria software that has had a
significant cultural, historical, aesthetic, or empowering impact on the public. Both
technical innovation and degree of popular uptake should be regarded as
relevant to assessing these criteria, and may be evaluated independently.

 An NSR should have as its mission the documentation, preservation, and
accessibility of such software. Additionally, an NSR should act to raise public
awareness of the importance of software preservation and the role of software in
the life of the nation.

 An NSR should be multi-lingual and represent the diverseness of the national
experience.

17 In July 2013 the author was asked to compile a list of the “10 Most Influential Software Titles Ever” for
Slate magazine. That list is available here:
http://www.slate.com/blogs/browbeat/2013/07/30/_10_most_influential_software_programs_of_all_time_f
rom_sabre_to_minecraft.html. Far more useful and revelatory, however, are the hundreds of comments the
piece attracted, many of which offer well-considered arguments for specific titles omitted, as well as more
general selection criteria.
18 See http://en.wikipedia.org/wiki/Game_canon.

http://www.slate.com/blogs/browbeat/2013/07/30/_10_most_influential_software_programs_of_all_time_from_sabre_to_minecraft.html
http://www.slate.com/blogs/browbeat/2013/07/30/_10_most_influential_software_programs_of_all_time_from_sabre_to_minecraft.html

Preserving.exe

Page 21

 An NSR should be sensitive to the acute limitations of a strictly nationally-scoped
collections policy .

 An NSR should have an open and public nomination and selection process, and
solicit participation from experts in industry, academia, journalism, and the public
at large.

 An NSR should be capable of acting as a trusted repository for verified authentic
object code and insist on the availability of executable object code as a pre-
condition for inclusion.

 An NSR should be capable of acting as a repository for verified authentic source
code, and advocate for the inclusion of source code in the strongest possible terms;
nonetheless, an NSR should not insist on the availability of source code as a pre-
condition for a title’s inclusion.

 An NSR should advocate for appropriate licensing and where necessary
appropriate exceptions to such legislation as the DMCA to provide for the archival
documentation and preservation of software.

 An NSR should cultivate industry partners to raise awareness and create support
for its mission.

 An NSR should cultivate partners in the open source community to raise awareness
and create support for its mission.

 An NSR should be agnostic with respect to free, commercial, or proprietary
software.

 An NSR should be agnostic with respect to high-level languages, platforms,
operating systems, hardware, and storage media.

 An NSR should conceive of its mission in terms of access whenever possible, and
work with academic, industry, and public partners to provide solutions for the
display and execution of legacy software.

 An NSR should act to enable research in best practices for software documentation
and preservation.

 An NSR should act to document and collect not only software but also the material
culture of software, including manuals and documentation, packaging, inserts,
“feelies,” and other accessories, popular computer magazines and books, images
(including screenshots), video (including screencasts), harvested Web content, fan-
created content, and development and design documents.

 An NSR should work in cooperation with the National Software Reference Library
at NIST19, the Internet Archive, existing or future museums and collecting
institutions, and individual collectors, hobbyists, and fans.

19 As described on its Web site, the National Software Reference Library “collects the original media for
off-the-shelf software. This information is processed to obtain digital signatures (also called hashes) that
uniquely identify the files in the software packages. With the signatures, law enforcement investigators can
automate the processing of these files on seized computers, system administrators can identify critical
system files that may have been perturbed, digital archivists can identify applications versus user-created
data, or exact duplicates of files.” As of this writing, the NSRL contains some 20,000,000 unique hash
values. While obviously a resource of tremendous importance that should have a role in any conception of
a National Software Registry, the NSRL is not a public-facing collection, nor is it designed to act as an
advocating entity in industry or with the public at large. It has no provisions for the circulation of software,
nor does it facilitate the execution of legacy code. Finally, it does not collect manuals or other forms of
material documentation. See http://www.nsrl.nist.gov/.

http://www.nsrl.nist.gov/

Preserving.exe

Page 22

Of these guiding principles the most controversial is likely to be my recommendation with
respect to the inclusion of source code. Numerous experts have insisted on the importance of
source code for software preservation and understanding our executable past.20 I too
endorse such arguments. However, the reality is that the source code for some programs which
would otherwise be obvious candidates for inclusion is going to remain a protected trade
secret for the foreseeable future. An NSR that conspicuously excludes historically significant
software on the basis of the absence of source code is going to be incomplete, impoverishe
and will dilute its relevance and efficacy through these obvious omissions. The reality too is
that some source code may simply no longer be available or locatable. But the absence of
source code does not mean that there are no preservation and documentation actions
be undertaken. (There may also be scenarios whereby an NSR could act as a depository f
protected source code, to be made public after a specified length of time.) In some
circumstances, techniques such as reverse engineering and disassembly may also render the
need for source code less acute. It is thus my view that insisting on the provision of source code
as an absolute condition for inclusion in an NSR would create insurmountable obstacles, prove
an unnecessary distraction, and prohibit positive steps that could be taken to ensure the
preservation of even proprietary software. Nonetheless, this is the single most important issue
for an NSR to consider in its foundation, and arguments on all sides should be heard and
evaluated.

d,

that can
or

21

Just as the then still-new medium of film was perceived as disposable or ephemeral or
frivolous and forgettable in 1918—in short, hardly the stuff of a usable national past in
Brooks’ exclusively literary account—so too is software currently in danger of having its
heritage eclipsed by the limitations of our own present moment. At the Preserving.exe meeting
a representative from Github, the massive open source online repository, made the connection
to such high-minded ideals all but explicit, declaring the software culture on the Web a new
cultural canon and invoking the likes of Emerson, the Beowulf poet, and Adam Smith. But
software is not just another medium or art form. It is in fact a meta-medium, one that has
grown to encompass a variety of other cultural functions and expressions, from commerce and
industry to art and entertainment—not the least of these being filmmaking, since movies are
now routinely created and processed using digital software.

Like film history, much early software history is already at risk, and some of it certainly lost
forever. But that is all the more reason for software preservation to take its place as part of
the national cultural heritage agenda, and to increase the public’s awareness of the
importance of software in the life of the nation. The serious consideration of the case for a
National Software Registry is a means toward those ends.

20 See, for example, John G. Zabolitzky, “Preserving Software: Why and How,” Iterations: An
Interdisciplinary Journal of Software History 1 (September 13, 2002): 1-8, and Leonard J. Shustek, “What
Should We Collect to Preserve the History of Software?” IEEE Annals of the History of Computing, 28.4
(2006): 112–111. Zabolitzky is uncompromising on this point: “The source code of any piece of software is
the only original, the only artifact containing the full information. Everything else is an inferior copy.”
21 An opposing argument might contend that insisting on the availability of source code for inclusion in the
NSR would be an incentive that would encourage software manufacturers to become less protective of their
legacy code.

Preserving.exe

Page 23

We didn’t see this coming:
Our unexpected roles as
software archivists and
what we learned at
Preserving.exe
A L I C E A L L E N , P R I M A RY E D I T O R O F T H E A S T R O P H Y S I C S
S O U R C E C O D E L I B R A RY A N D P E T E R T E U B E N , A S S O C I A T E
R E S E A R C H S C I E N T I S T , A S T R O N O M Y D E PA R T M E N T , U N I V E R S I T Y
O F M A RY L A N D

BEFORE PRESERVING.EXE

The idea that software should be preserved, archived, for its own sake was not really on
either of our radars before hearing about the Preserving.exe Summit. Certainly we both have
kept old software around for our own personal use (in part to be able to retrieve data) and
one of us (Alice) has saved packages of old software at work to eventually present to retiring
coworkers (“As a souvenir of your pioneering use of Visicalc, I’m pleased to give you the most
recent version available…”).

Our involvement in the Astrophysics Source Code Library (ASCL), a free online registry for
source codes used in astrophysics research, arises from our interest in making software used in
research discoverable in order to increase the transparency of astrophysics research; software
used in research is a method, and should be open to examination just as other methods are.
We register old and new source codes for astronomy to make the science understandable, to
increase its transparency and preserve the integrity of the science. In addition, the science
benefits from the reuse and further development of codes; many authors encourage
enhancement of their codes by others to better benefit the community.

To be discoverable, astronomy software must of course be available, preserved; rather than
storing source code, the ASCL generally points to a code’s location, which is usually on a
university or personal site or in a social coding repository such as GitHub or SourceForge. We
are not aware of any large-scale effort to preserve copies of astronomy software. The
Summit convinced us that without such an effort, some of the greatest artifacts of the
community’s creative problem-solving are at risk of being lost.

OBSERVATIONS

Participant presentations educated us on other archiving efforts and different views on
software preservation, and inspired changes to our own project. We discuss three of the
overarching ideas and challenges for archivists that the Summit brought out.

http://bricklin.com/history/vcexecutable.htm
http://ascl.net/
https://github.com/
http://sourceforge.net/

Preserving.exe

Page 24

Software as a cultural artifact
The Summit broadened our view and appreciation for software as a cultural artifact and as a
method of capturing creativity in problem-solving, whether the problem is writing an engaging
computer game for entertainment or software to model gravitational effects on colliding
galaxies.

Now we see the loss of computational methods that result in research as a loss of part of
astronomy’s cultural heritage. This isn’t happening just for astronomy, of course; the Summit
made clear that it is happening for everything. With so much rendered digitally, whether born
that way or migrated to a digital medium, without preserving the digital artifacts and the
software (and sometimes hardware) to lift these artifacts from their digital storage, we risk
losing our art, our music, our games, our prose, our data, and our histories, of daily life and
activities, of solutions to scientific problems, of popular pastimes and play experiences, and
even knowledge of our computer worries and angst such as that (which once loomed so large
and now seems so distant and almost quaint) over Y2K, a worldwide issue. Say “Y2K” to a
class of high school seniors today, and see how many of them know what you’re talking about!

Though we have always considered problem-solving, and therefore authoring software, as a
creative endeavor, Rachel Donahue from the University of Maryland’s Maryland Institute for
Technology in the Humanities, in her talk Saving the Software Present to Read our Robot Future,
went further and stated that she sees software as an art form, one that can and should be
studied. As an archivist, she wants to preserve, and is preserving, not only the finished
software, but also the artifacts of its creative path, of its development: its earlier versions,
design documents; pseudocode written in margins, and correspondence. (How much
correspondence is lost by hitting delete!) She pointed out that a student of videogame design
may want to study what came before just as visual arts students study the sketches of old
masters.

Mozilla’s Otto de Voogd and Robert Kaiser’s talk Unlocking the Potential showed that Mozilla
goes even further: Mozilla not only archives all of its source code, releases, and executables,
but also its mailing lists, bug tracker and analysis, all discussions and code changes, why the
changes were made, and its traceability matrix in development and for software fixes, all of
which is available online. In response to pre-workshop questions, Otto mentioned that one of
the reasons for preserving software is “the discovery of prior art,” which we took to mean art
that may not have been recognized as such in its time. In addition to the possibility of such
discovery is the need to preserve current art; Mark Mansfield of the Smithsonian American Art
Museum curates born-digital time-based media art such as Cloud Music, a mixed media
project that turns the movement of clouds into sound. Software enables a new performance
space for creativity; such software-dependent art presents unique challenges not just for its
exhibition, but also for its preservation.

In a similar vein, Doug Reside of the New York Public Library (NYPL) mentioned in his pre-
conference comments that the NYPL is increasingly receiving born-digital content from artists
created with proprietary software; copies of this software is necessary to make the content –
the art itself – accessible. He also preserves set and lighting designs for theaters and said in
his presentation Serving Born Digital Video that he is able to recreate these through emulation,
allowing users not just access to these designs, but the ability to manipulate them, too.

There was a lot of interest in and attention given to the preservation of video games. Games
represent many people’s first deliberate use of software, and its archiving comes perhaps
more easily than other kinds of software, as it is ubiquitous, inexpensive, and very familiar. In
a very exciting break-out discussion, the opinion that archiving games seems useless was

http://mith.umd.edu/
http://mith.umd.edu/
http://americanart.si.edu/
http://americanart.si.edu/
http://eyelevel.si.edu/2013/07/cloudsourcing.html
http://www.nypl.org/

Preserving.exe

Page 25

countered by Megan Winget (University of Texas at Austin) and others vigorously defending
the practice. Megan pointed out that games use a well-defined set of software and can also
serve as an easy measure of success to demonstrate that emulation works: a child playing the
game smiles. Certainly games embody a great deal of creativity and art and some become
deeply engrained in our culture, with elements from them, especially characters, showing up on
television and in movies, as toys, in popular literature and other media.

Determining what to preserve
Those preserving software cannot know what will be needed, useful, or helpful in the future
nor how the software and related materials may be used; this was a recurring theme of the
Summit. Doug Reside asked, “What are the things that we can safely say no to archiving?” Even
with our very tight focus on astrophysics codes, we have to make decisions as to what is
suitable for our resource. A founding principle of the ASCL was to register software written by
scientists used in refereed research; should we also register software used by a telescope to
reduce data used in research if the code itself is not mentioned in any journal paper? Should
we include software used to control telescopes?

We have looked to other sciences to inform our efforts in astrophysics, to see what is archived,
and whether and how it is available. Our finding is that code archiving across scientific
disciplines is very uneven. This was corroborated at the Summit: Debbie Douglass of the MIT
Museum pointed out that different disciplines have different philosophies about archiving
materials. She said that aeroscience, for example, saves everything; doing so is part of the
culture. Left to their own devices, those in life sciences will save nothing – they don’t have the
habit of archiving. She finds software an interesting case and stated there are actually a lot
of specialized (sector) software archives.
Other software preservation efforts like the ASCL with very narrow mandates face the same
“what to save” issue; Amy Stevenson of Microsoft Archives (Software Preservation in a Software
Company: The Shoemaker’s Children...,) stated she cannot collect everything. She preserves
Microsoft software and the artifacts around its finished products: its documentation, books,
even the marketing for the software, and what is competitively important or may become
competitively important, whether produced by Microsoft or by competitors.

The National Institute for Standards and Technology’s National Software Reference Library
(NSRL) preserves only executables; it does not collect source code nor the artifacts of its
creation. Barbara Guttman reported that this effort started as a way to help the law
enforcement community with computer forensics, and that the NSRL has been expanding into
software identification to support computer security.

From a breakout discussion, one group pointed out the value of heterogeneity in the archiving
community, as the goals for archiving vary and what is saved will reflect this. The
organizations represented at the Summit ranged from those with a specific focus to their
archives, such as Mozilla, the Microsoft Archives, and the ASCL, to those with far more material
to consider for their collections. The Library of Congress, NSRL, university libraries, the
Smithsonian museums, the Internet Archive, and others all have much more to consider, a much
broader range of software to think about, than those with a more narrow focus, but even so,
this underlying issue is the same for all of us: what are the things that we can safely say no to
archiving?

https://www.ischool.utexas.edu/
http://web.mit.edu/museum/
http://web.mit.edu/museum/
http://www.nsrl.nist.gov/

Preserving.exe

Page 26

Running and using preserved software
Preserving software is important, but how useful is it if there is no way to run it? One of our
concerns is software rot, the inability to run a code on current hardware or under current
software. One code author recently wrote:

Certainly, I get about one e-mail a year about the Figaro data reduction code, and it's almost
always: "I upgraded to the latest OS X version and now your program doesn't work any
more..." (Keith Shortridge, personal correspondence)

With the accelerating pace of technological change, the inability to run archived software is
certain without mitigation strategies against rot. Software that rots may leave behind
orphaned data, information to which individuals and organizations need access but can no
longer retrieve. The NSRL exists in part to ensure that law enforcement can access information
needed for its investigations and, as pointed out the article Life-Saving: The National
Software Reference Library (one reading for the Summit), because it had the software to
access orphaned information, even had an important role in saving someone’s life. Mozilla’s
Robert Kaiser mentioned the need for standard data formats in the talk Unlocking the
Potential; he would like to be able to open his own data. In discussion, Robert Hanisch
(STScI/ASCL/VAO) stressed that astronomy went to a standard data format 30 years ago, a
format still in daily use. Having a standard flexible data interchange has enabled a great
deal of research and allowed astronomy to grow as a science.

In his talk Hardware and Emulation to Access Creative Computing, Nick Montfort of the
Massachusetts Institute of Technology made clear that both running software on original
hardware (which has its own complexities) and in emulation have their benefits. A key benefit
of running software on its original hardware is to provide a client with an authentic experience
in using the software. In an open discussion, the point was made that eventually, even if the
hardware remains usable (which is questionable over the long-term), the people who can
bootstrap the systems and troubleshoot problems with the hardware will no longer be
available.

Henry Lowood of Stanford University Libraries stated that people are working on migrating
software and data off the original media and from the original hardware. He sees two
eventual options: running the software will be up to the user, or software will run in emulation.

Clifford Lynch (Coalition for Networked Information) said outright in his remarks (Putting
Software Preservation in Its Broader Context) that the future of preserved software use will be
through emulation; the experience of using original hardware will be lost. He tempered this by
observing that libraries have 18th century books, but they don’t preserve the experience of
reading that book in the 18th century, without electric lights and other modernities.

The Olive Archive Project (Not a Graveyard: The Olive Archive Project) was presented by Erika
Linke and Dan Ryan from Carnegie Mellon University. This project takes the approach of
creating virtual machines and running software natively on those machines. Erika and Dan
want to preserve not only the code and data, but also the experience of using the software. In
a demonstration of the project, a virtual machine was streamed live over the internet that
allowed Dan to play Doom in an emulator. Megan Winget stated a need to archive the
documentation of the users’ experience in running and using software; in later discussion, the
question as to how to evaluate the authenticity of the user experience and whether anyone
has been researching this was asked. No one had an answer for that.

http://blogs.loc.gov/digitalpreservation/2012/05/life-saving-the-national-software-reference-library/
http://blogs.loc.gov/digitalpreservation/2012/05/life-saving-the-national-software-reference-library/
http://www.stsci.edu/
http://ascl.net/
http://www.usvao.org/
http://trope-tank.mit.edu/
http://library.stanford.edu/
http://www.cni.org/
https://olivearchive.org/

Preserving.exe

Page 27

It certainly makes sense to us, as owners of a mostly working Kaypro-4 (Peter) and Apple II+
(Alice), that emulation will be the way the vast majority of preserved software will be run; old
hardware and storage media will not work forever. For our project, running code can be
important, and we think the Olive Project approach could be used for emulating astrophysics
codes that current operating systems and hardware can no longer run. Running these codes in
emulation may have real benefits to the science; for example, codes that had taken six months
to run to generate results when the codes were new would run at much greater speeds,
allowing multiple iterations of an experiment that the original investigator may have been
able to run only once.

Even if codes cannot be run, looking at them has value. In his talk Reflections on Users and
Stewardship of Software, Josh Greenberg from the Alfred P. Sloan Foundation made the point
that seeing what makes software work, understanding the source and what it’s doing and how,
has value. We agree, and this is why we seek source codes rather than executables. Scientists
should be able to see what assumptions, equations, values, and algorithms have been used to
generate results; this is one way the transparency and integrity of the science is maintained.

HURDLES, OPPORTUNITIES, AND RECOMMENDATIONS

Small group and open discussions helped participants identify hurdles to and opportunities for
preserving software. We address some of them here in no particular order and include some
of the relevant recommendations made during the Summit.

Access to software and materials

Acquiring software to archive continues to be an issue; how do we find it, and what happens
when we do? We need ways to find and reach out to those who may have old software. If
one of the Summit participants comes across materials that are not compatible with his or her
project, there should be a way to channel that material to an archival effort that can make
use of it. In addition, we have seen codes that had been downloadable from online sources
disappear when code authors change institutions, leave the field, or die.

Jason Scott (Internet Archive) offered to pull together a mailing list that those at the Summit
could use to circulate information about available materials as an informal way to help
channel available materials to those who might be interested in it. The invitation to join the
mailing list was sent just a few days after the Summit ended.

Making use of the Internet Archive’s Wayback Machine is a useful strategy for software that
at one time has been available online. This is something we have seen with astrophysics
software; a resource called AstroTips.com, which tracks astronomy software used by amateur
astronomers, currently uses links to the Wayback Machine for software not otherwise (still)
available online, such as the source code called Yomama. We have not yet started to use the
Wayback Machine for this purpose, but will start downloading “lost” software from this
valuable resource to preserve it in the ASCL.

Joel Wurl (National Endowment for the Humanities) was struck by the number of comments
about storing the ancillary documents and artifacts around the software, not just the software
itself, and stated that there are collecting organizations that have some of this other material
and they need to know there is a broader objective. Abbey Potter (Library of Congress)

http://www.sloan.org/major-program-areas/digital-information-technology/?L=soeuazqbl
http://www.archive.org/
http://archive.org/web/web.php
http://astrotips.com/
http://www.neh.gov/
http://www.digitalpreservation.gov/

Preserving.exe

Page 28

asked whether there are other communities we should do outreach to. Though that didn’t get
answered directly, Debbie Douglass said we can reach out to other academics, not just
historians. She suggested that we have to think about how our archived resources can be used;
that may help inform us as to how we can acquire material.

Access to and acquisition of materials may be accomplished by reaching out to collectors;
many collections, including the Internet Archive and the Boston Computer Museum (now the
Computer History Museum), got started and have the bulk of their material coming from
dedicated collectors, from private sources. We can collaborate to help find homes for
materials that are offered to us but that we don’t need – this was a main reason for Jason to
assemble a mailing list. “Well, we don’t collect that, but this person does,” or “Let me see who I
can find who may be interested.” These informal networks can be very useful in building
collections.

The ASCL acquires software primarily by hunting it down; we skim journal articles (that then
often refer to other journal articles) to look for codes used in the research, searching for any
code mentioned online, and if we do not find it, asking the author of the code for its location
or, if none exists, an archive file of the code. Most of our requests to authors go unanswered
(67%) or are declined (20%). Our goal is to have a substantial number of code authors and
journals request registry in the ASCL, and though we do see movement toward that goal, we
suspect it is still several years away.

Copyright and DMCA

Much of the preserved software from the early days of personal computers is available
because dedicated hobbyists saved it, sometimes having broken copy protection to do so. The
question arose as to what happens when the only copy left is an illegal copy – should it be
archived?

The Digital Millennium Copyright Act (DMCA) is seen as an impediment to archiving. In his talk
Optical Media Mass Ingest, Paul Klamer of the Library of Congress, which has an exemption
from DMCA that allows them to break encryption on materials, informed us that of the DVDs
that come in for copyright reasons, 20% aren’t readable when he tries to take the .iso image
for archiving. Nick Montfort stated that though there are significant technical challenges, they
are not the bottleneck; the hindrances are copyright. Rachel Donahue noted that intellectual
property rights had come up several times in the discussions at the Summit. She pointed out the
need for legislative support that allows archiving intellectual property without violating
copyright and patent laws.

As commercial software ages and is replaced with newer versions or different products, it
loses its value as a commercially viable product; this provides an opportunity for archivists,
who can ask for permission to release it. As of this writing, the Computer History Museum
(CHM) is offering the source code for Adobe Photoshop 1.0.1 as a download; Adobe has
made the code available through the museum for examination and study. As the CHM states,
“Software source code is the literature of computer scientists, and it deserves to be studied and
appreciated.” This echoes back to Rachel Donahue’s statement on the value of software as an
artwork worthy of study.

Closed/walled systems

Software that is walled off, such as Facebook, The Washington Post, and anything in the cloud
cannot be archived, nor can it be emulated well; it would be an astronomical effort to

http://www.computerhistory.org/
http://www.copyright.gov/title17/92appb.html
http://www.loc.gov/avconservation/
http://www.computerhistory.org/
http://www.computerhistory.org/atchm/adobe-photoshop-source-code/

Preserving.exe

Page 29

recreate the function or experience of using these systems without access to the software and
other key elements such as highly time-dependent databases.

In thinking this over, we came to realize there are ways to demonstrate or imitate the user
experience. Just as for the 400th anniversary of the construction of Galileo’s telescope people
could order kits for putting together a plastic replica of Galileo’s telescope and on Sunday
evenings, we can listen to 1950s radio shows on National Public Radio complete with Maxwell
House ads, we might encourage the screencasting of software sessions so future archivists can
show patrons what using today’s software looked like. Though screencasting could preserve
what these systems look like, unless the proprietary software is being archived by the
companies producing it, this software may eventually be lost.
That said, Ben Balter of GitHub pointed out in his presentation The Next Cultural Commons that
75% of the internet runs on open source software, and increasingly, open source software is
used by governments, corporations, and individuals. The hope that GitHub, other collaborative
software sites, and open source software holds out for software in general does not apply to
closed systems. The issue of preserving software living in a walled garden remains for future
discussion.

And the rest (the Professor and Mary Ann)

We cannot fully cover the information exchanged in this two-day meeting in this brief report,
but amongst the many other things discussed, we want to mention briefly these few additional
items.

People producing born-digital works don’t know to preserve them nor how to preserve
them, and start-ups don’t know the importance of what they are doing and don’t archive
as they go.

The necessity to archive goes back to the point that we don’t necessarily know what
will be useful in the future. Recommendations for dealing with these issues included
asking for advice from experienced archivists to help us learn what might be useful
and should be archived, raising awareness of the importance of archiving, and for
software developers, providing training such as that offered by Software Carpentry
and guidance on coding practices such as versioning. Making the case for preserving
software by showing how preserved software has been used may also be useful.

User expectations vary across constituencies.

What, how, and why we collect influences who our users are and what their
expectations for our collections are. The archival requirements for different types of
artifacts and offerings vary and also depend on what our collections are trying to do
and how they are used. We could perhaps collaborate to come up with lists of what
needs to be considered for different types of software and other materials. This was
framed as a list that answers the question “What do I need to think about now that
this thing has been offered to my collection?” Such checklists would help people
consider all angles of an acquisition.

We need funding and resources to do what we do.

This is an issue we struggle with mightily, as all of our ASCL efforts are volunteer! As
our effort evolves, some of its future possibilities depend much on funding and
community input. So it is with other efforts represented at the Summit. We (all of us)

https://github.com/

Preserving.exe

Page 30

must build our cases for the importance of preserving software and reach out to
funding organizations to share and impress upon them the value of what we do.

As software is lost, there is a loss of human knowledge over time.

This is a two-fold problem; the loss of software and its artifacts is one type of loss,
and the loss of people familiar with the software and hardware, who know how it
should run and how to make it run and to repair or rebuild it, is another.
Recommendations to mitigate these losses included archiving anything and everything,
not just software, but related artifacts as well, increasing the visibility of the need for
archiving, and using of original hardware where possible and using emulation to
recreate the experience of software use when use of original hardware is not possible
or desirable. Greater visibility of archiving efforts and greater coordination among
archivists were also mentioned.

This argument for archiving – the loss of human knowledge and of astrophysics culture
– had not occurred to us in quite those terms. We have made the philosophical
arguments regarding science transparency and reproducibility for preserving
astrophysics codes, but not the cultural arguments, and now consider doing so.

TOWARD A NATIONAL STRATEGY

A national strategy will be challenging to develop and implement. We envision difficulty in
meeting the needs of the different interest groups and fields. However, we feel one step in the
process is to require public release of software developed through government-funded
research (absent compelling reasons, such as national security). Further, efforts should be
undertaken to ensure release actually takes place. Currently, government policies regarding
these products of research are uneven, with some funding programs requiring release of
research artifacts such as codes and data and others not. As such products are taxpayer
funded, these policies should be uniform and strongly in favor of public release. Making the
software available not only serves the immediate public interest, but also makes the software
available for archiving.

Conclusion

What did we get out of these discussions? We are very impressed at the lengths to which
others go to preserve so much surrounding software and its development and use; we have not
been preserving astrophysics source codes, simply serving as a registry of them as so many
scientists prefer to keep their codes close to them (for a variety of reasons, some of which they
may have no control over, such as intellectual property issues). Clearly there are lessons to be
learned from others who preserve software, but as was pointed out in the meeting, there are
also lessons to be gleaned from previous disparate archiving efforts.

As a result of this Summit, we have now started to archive at least one version of each code
where we can and as time allows, not to serve it to the public, but simply to have it archived in
case the code disappears into the black hole of deleted webspace. The idea that we don’t
know what may be useful in the future struck us deeply, and as we wrote this report, one of us
(Peter) often stated that phrase as we debated what to include.

We are working to preserve the integrity of a science through making codes discoverable for
examination, and so have become accidental software archivists; to know that others are

Preserving.exe

Page 31

wrestling with many of our same issues (though on a much larger scale), and that we might find
not only common ground but also common solutions, is enlightening and comforting.

Preserving.exe

Page 32

Life-Saving: The National
Software Reference Library

I N T E R V I E W W I T H D O U G W H I T E , P R O J E C T L E A D E R F O R T H E
N A T I O N A L I N S T I T U T E O F S T A N D A R D S A N D T E C H N O L O G Y
N A T I O N A L S O F T W A R E R E F E R E N C E L I B R A RY B Y T R E V O R
O W E N S , L I B R A RY O F C O N G R E S S , M AY 4 , 2 0 1 2

Insights is an occasional series of posts in which members of National Digital Stewardship
Alliance Innovation Working Group take a bit of time to chat with people doing novel,
exciting and innovative work in and around digital preservation and stewardship. In this post, I
am thrilled to have a chance to hear from Doug White, Project leader for the National
Institute of Standards and Technology National Software Reference Library. I heard Doug
give a fantastic talk about his work at the CurateGear Workshop (see slides from the talk
here).

Trevor: Before we dig into the details of the project, you mentioned that the NSRL has
already resulted in saving at least one person’s life. Could you walk us through exactly how
that came about? I think it makes for a really compelling story for why software preservation
matters.

Doug: Certainly; it was an unintentional circumstance. To begin, we often were asked if
software may be borrowed from the NSRL, and the response was, “No, we are a reference,
not a lending library.” But then we received a call from an Food and Drug Administration
agent on a Friday afternoon in December 2004.

A medical supply company in Miami had received a delivery of botulin, which was to be
processed into Botox and distributed. However, it was misprocessed, and a dangerous
concentrate was distributed. The FDA had all of the information needed to identify the
recipients, but the information was in a file created with a 2003 version of a popular business
software application. The 2004 version available to the FDA could not open the data file. The
manufacturer of the software was also unable to supply the relevant version.

It so happened that one of the agents involved in the case was familiar with the NSRL, and
had in fact provided software to us earlier in the year. He called, explained the situation, and
asked if we had the 2003 version of the software. We did! The agent then arranged for an
FDA contact to come to NIST, get the software, and put it on a jet to Miami. The people
working the case in Miami were able to install the old version, open the data file, and trace
the paths of the botulin.

Several fortunate events occurred to enable this story to end on a positive note. We have a
process in place should this occur again, though we consider the NSRL to be a “last resource.”

http://digitalpreservation.gov/ndsa/working_groups/innovation.html
http://digitalpreservation.gov/ndsa/working_groups/innovation.html
http://www.nsrl.nist.gov/
http://www.nsrl.nist.gov/Documents/NSRL_Jan_2012.pdf
http://www.nsrl.nist.gov/Documents/NSRL_Jan_2012.pdf

Preserving.exe

Page 33

Trevor: I have heard you describe the National Software Reference Library as a library of
software, a database of metadata, a NIST publication and a research environment. Could
you give us a little background on the project and explain how NSRL serves these different
functions?

Doug: The diagram below is an overview showing several facets of the NSRL. The path using
red arrows involves our core operations, green arrows designate “derivative” operations, and
blue illustrates some collaborative research.

The physical library is our foundation. At the inception of the project, in 2000, organizations
were creating and sharing metadata describing computer files on a very ad hoc basis. If the
metadata were questioned, it was highly unlikely that the original media were available to
resolve the issue. The NSRL operates in the same fashion as an evidentiary locker, with the
original media available in the event of a question.

The physical library has a parallel virtual library. NSRL has created bit-for-bit copies of the
original media and images of packaging materials that are kept on a network storage
device. I need to point out that the NSRL runs on a network disconnected from the Internet, and
in fact, also disconnected from the NIST network infrastructure, using equipment and cables we
installed. The media copies can be manipulated automatically, used by multiple processes and
repeated physical contact with original objects is minimized.

http://blogs.loc.gov/digitalpreservation/files/2012/05/NSRL-workflow.jpg�

Preserving.exe

Page 34

From the packaging and media, we collect metadata from every application, from every file.
We store the metadata in a PostgreSQL database. The database has several schemas, which
act as conceptual boundaries around accession processes, the collection of software
application descriptions by manual processes, the collection of content metadata by
automated processes, storage processes and publication processes. The work processes and
the technology are modular components that are easy to test, maintain, train, or reuse. The
database metadata (with the exception of staff information) is available on request.

There is a subset of the collected metadata which is of use to investigators and researchers in
the community in which NSRL participates, and the subset is published quarterly as NIST
Special Database #28. The specific data includes:

 Manufacturer Name
 Operating System Name
 Operating System Version
 Product Name
 Product Version
 Product Language
 Application Type
 SHA-1 of file (digital fingerprint)
 MD5 of file
 CRC32 of file
 File Name
 File Size

The research environment allows NSRL to collaborate with researchers who wish to access the
contents of the virtual library. Researchers may perform tasks on the NSRL isolated network
that involve access to the copies of media, to individual files, or to “snapshots” of software
installations. In addition to the media copies, NSRL has compiled a corpus of the 25,000,000
unique files found on the media, and examples of software installation and execution in virtual
machines.

Trevor: Could you give us a brief overview of what exactly is the content of the library? What
data and metadata do you collect and how do you work with it?

Doug: The library contains commercial software, both off-the-shelf shrink-wrapped physical
packages and download-only “click-wrapped” digital objects. This includes computer
operating systems, business software, games, mobile device apps, multimedia collections and
malicious software tools.

Most of the software in the NSRL is purchased. We try to acquire everything the top selling
lists. Some software we hear about by word of mouth, some by schedule (like tax programs
each tax year, security, antivirus) and some by requests from law enforcement and other
agencies. We accept donations from manufacturers and have paperwork to state we will not
use the software license. We accept donations of used software as long as it is in useable
condition but there is no guarantee that it will make it into the NSRL.

http://www.nist.gov/srd/nistsd28.cfm
http://www.nist.gov/srd/nistsd28.cfm

Preserving.exe

Page 35

The data and metadata is detailed in documents on the NSRL website. To summarize, we
collect accession data familiar to your readers; the information about the manufacturer and
publisher, the minimal requirements listed, the number and types of media, etc. We also
process the contents of the media to obtain metadata about the file system(s), directory
structure, file types (based on signature strings) and many file-level metadata as I mentioned
in the previous question.

NSRL makes minimal use of this metadata. We perform mock investigations using the
metadata to measure the applicability. We investigate the randomness of the cryptographic
algorithm results. We are constantly seeking related collections with which we could combine
an index or translate a taxonomy, to cross-reference NSRL data with other sets.

Trevor: In the context of thinking about NSRL as a research environment it seems that the key
value there is the corpus of software, the 23,809,431 unique files, that you have identified.
Could you tell us about some of the research uses these have served so far? The audience for
the blog varies widely in technical knowledge so it would be ideal if you could unpack these
concepts a bit too.

Doug: The highest value, in my opinion, is the provenance and persistence of the collection.
Given the virtual library, it is easy to apply new technology, new algorithms to the entire set
or specific content automatically, while maintaining the relationship to previous work and the
original media.

NSRL has applied several cryptographic algorithms against the corpus, and statistically
analyzed the results. This is an interesting measurement of the algorithm properties within the
relatively small scope of binary executable file types. NSRL found that indeed there were no
collisions among the 25 million files.

Working with a collaborator, we are able to define precise, static content sections of
executable files, obtain a digital fingerprint of those sections, then identify those sections when
they are present on a running computer. This can allow an investigator to determine that a
program was running, even though the files do not exist on the computer.

Working with a collaborator, we are able to provide practical feedback on the development
of an algorithm called a similarity digest. Currently, if you have two digital copies of the
Gettysburg Address text, one which begins “Five score and …”, the two cryptographic hashes
of the differing files will be extremely dissimilar, as intended. Two similarity digest results on
the two Address files will be similar, and the similarity can be measured. Algorithms of this
kind are also known as “fuzzy” hashes, and they tend to be impractical for very large sets.
We are assisting in developing a practical implementation.

NSRL has in past limited metadata collection to the content of the application media. We have
now acquired the resources and defined the processes to automatically install an operating
system on a virtual machine, run the OS, perform noteworthy tasks, install applications,
generate content, uninstall applications, etc. This enables the collection of metadata on
dynamic system files, registries, log files, memory, various versions of user-generated files. We

http://www.nsrl.nist.gov/

Preserving.exe

Page 36

can use some of this metadata as feedback into our core process, and we have some research
opportunities.

Another imminent collaboration is the creation of many word processing documents with
created with different applications and multiple versions that contain the same text. A corpus
of document tags or codes spanning versions and products has generated some interest.

Trevor: Could you tell us a little bit about the NSRL environment? What kinds of technologies
and software are you currently using currently and what are you exploring for use in the
future?

Doug: We are fortunate to have three contiguous rooms, one that houses the physical library,
one that houses the data entry workstations, and one that houses servers and storage. The
proximity of the rooms allowed us to pull our own cables, which makes that level of our
infrastructure a controlled, known quantity.

The physical library has an alarmed, multi-factor entry control. The shelf system is a powered
collapsing system which defaults to a closed, fire-retardant position. The environment is not
kept within the recommended practices for archives; this was considered, but not implemented.
Heat, fire, humidity and other risks are minimized to the best extent we can.

NSRL has strived to keep infrastructure implementations to hardware and technologies that
can be quickly obtained and made functional in the event of a disaster. I would prefer to not
name manufacturers at this time, but am willing to discuss those details with individuals.

In the second room, core work is performed using OpenSuSE Linux workstations for browser-
based data entry and media copying. The Linux machines can be created in bulk or ad hoc
using a net boot image. This room also contains a system used to perform software
installations, so the NSRL can collect installed files, registry information and other artifacts of a
running application. This room contains a computer attached to the internet on which NSRL
downloads digital-only distributions of software. A photography stand and flatbed scanning
stations are in this room, used to create digital photos of packaging, so these photos can be
used for data entry and research instead of shelved material.

Movement of original packages and media is limited to the previous two rooms.

The third room is a computer server room with racks of equipment. The media copies are
stored on a commercial, expandable network (currently 42TB) that is capable of access by
Windows, Apple and Linux computers. We have several quad-core rack mounted servers that
perform the automated distributed metadata collection tasks. A PostgreSQL database and an
Apache webserver reside on one of the rack servers which is dedicated to these functions. The
database is on local storage in that server.

The equipment described in the previous paragraph is duplicated, and that is the research
environment. Media images, individual files, virtual machine slices and all databases are

Preserving.exe

Page 37

backed up across a dedicated fiber connection to storage several buildings distant.
Verification of critical files is performed nightly. We also periodically ship copies of the
critical files to NIST Boulder, CO, campus.

The software we use is mostly written in Perl, with some PHP for the browser-based data
entry. Reuse is key, as is flexibility; the NSRL code is essentially a wrapper or application
interface which calls third-party tools to manipulate media, files or systems.

We have a quality assurance process that involves loading NSRL quarterly candidate releases
into several third-party digital forensics tools, in each publishing cycle.

We don’t anticipate substantial changes to our technology or software in the near future. If
anything, we would revisit our internal database design, and address some issues that did not
scale up as well as we expected.

Trevor: If other organizations have special collections would NSRL be interested in adding
those collections to the reference library? If yes, what process would you suggest to someone
interested discussing such an arrangement?

Doug: NSRL is very interested in pursuing loan arrangements with other institutions. Transfer of
materials to NIST need not be a requirement. Please contact me, or any NSRL staff, via
nsrl@nist.gov.

Trevor: Are there more research uses or ways that you think the NSRL could play a role in
digital preservation work and research? Further, if any of the folks who follow this blog are
interested in exploring doing research involving the software corpus what should they put
together and how should they go about getting in touch with your team?

Doug: We are new participants in the community, so I believe we are still at the point of
introducing ourselves. I am hopeful that uses may be identified as our capabilities and
activities are made known. This blog is a step in that direction, and I thank you for this
opportunity. Anyone with questions regarding research access should contact me.

Trevor: As a final question, could you tell us a bit about how the NSRL came about? One of
the tricky parts of digital stewardship is establishing the value and need for building and
maintaining collections and I think the story of the need and uses that the NSRL serves offers a
powerful frame for thinking about the kinds of coalitions and common needs that digital
stewardship initiatives work to support.

Doug: Prior to NIST involvement in digital forensics, Law enforcement identified the need for
automated methods to review the large number of files in investigations involving computers.
The FBI “Known File Filter” project supplied hash values of known files, the NDIC “Hashkeeper”
project supplied hash values of installed files and of “known malicious” data files. Several
commercial and open source tools existed that each used different hash values (CRC32, MD4,
MD5, SHA-1)

Preserving.exe

Page 38

Hash values were exchanged informally throughout the entire community via email, FTP sites,
etc. Investigators had to know where to find hash sets; investigators had to judge the quality
of the hash sets. There was no central, trusted repository, and there were open avenues for
conflicts of interest.

NIST was contacted because of its history of impartiality in research and standards
development. Among the benefits of this involvement were :

 NIST is an unbiased organization, not in law enforcement, not a vendor
 NIST can control quality of data
 NIST can provide traceability by retaining original software
 NIST can provide data in formats useful by many existing tools
 NIST has distribution mechanism in the Standard Reference Data service

The result of this is a data set that is court-admissible, a process that is transparent, and a
collection open to researchers.

Preserving.exe

Page 39

Challenges in the Curation
of Time Based Media Art

I N T E R V I E W W I T H M I C H A E L M A N S F I E L D , A S S O C I A T E
C U R A T O R O F F I L M A N D M E D I A A R T S A T T H E S M I T H S O N I A N
A M E R I C A N A R T M U S E U M B Y J O S E (R I C K Y) P A D I L L A ,
L I B R A RY O F C O N G R E S S , A P R I L 9 , 2 0 1 3

This time in the Insights Interviews series we get the chance to speak with Michael Mansfield,
an associate curator of film and media arts at the Smithsonian American Art Museum and
representative in Smithsonian’s Time Based and Media Art Conservation Initiative. Mansfield
has contributed to exhibitions including The Art of Video Games , Watch This: New Directions in
the Art of the Moving Image, and Nam June Paik: Global Visionary. I’m excited to get the
chance to speak with Michael about his experience and insights on the curation of time based
media art.

Ricky: Can you tell us a bit about your work at the Smithsonian American Art Museum? I would
be particularly interested to hear about how your work connects with digital preservation.

Michael: I am the Associate Curator for Film and Media Art overseeing and organizing the
permanent collection, acquisitions and exhibition practices for digital, electronic and moving
image artworks. Part of this work includes developing best practices for the preservation of
artworks and related archive material comprised of digital and electronic materials. Digital
media is an increasingly important aspect of our cultural heritage, and at the moment, it plays
two critical roles in the museum’s initiatives. First, the institution is authoring its own digital tools
to assist in preservation efforts around media artworks, both analogue and computer driven.
And second, contemporary artists are authoring artworks using new and unique digital
languages. These issues present significant challenges, but challenges that we are eager to
respond to.

Ricky: Could you give us some examples of some of the pieces you have worked with? What
is particularly challenging about working with time based media art? It would be ideal if you
could talk us through challenges in working with particular pieces.

Michael: Time based artworks are complex. A particularly challenging characteristic of time
based art is that any single artwork may exist in a multitude of forms. From a preservation
perspective, the art object is both the physical components –which often mean an array of
components – and the binary signature, which may include multiple assets. The artist’s
relationship to both ‘materials’ is really very important to understanding the artwork’s place.
As a curator of this collection, I need to ensure that the two remain compatible in perpetuity.
 One example might be Jenny Holzer’s artwork For SAAM.

It is a 28’ tall, site specific, light column suspended in the museum’s Lincoln Gallery. The column
is comprised of 80,640 LEDs, managed by integrated circuits and attached to several

http://americanart.si.edu/pr/staff/bios/mansfield_bio.pdf
http://americanart.si.edu/
http://americanart.si.edu/exhibitions/archive/2012/games/
http://americanart.si.edu/exhibitions/archive/2012/watchthis2/
http://americanart.si.edu/exhibitions/archive/2012/watchthis2/
http://americanart.si.edu/exhibitions/archive/2012/paik/

Preserving.exe

Page 40

customized circuit boards. Jenny Holzer’s texts – the content displayed on the column – exist as
code running in DOS on an old computer laptop. There are eloquent relationships between
her text based work, the code on the machine, and the visualization in the gallery. Managing
the complexities of that on exhibit and in the collection is daunting.

Ricky: What lessons have you learned in working with this material? Further, do you think the
lessons you’ve learned in this work transfer more broadly to preserving objects with software
components?

Michael: There is a steep learning curve with artworks of this kind. It is difficult to build an
accurate model for handling all time based art, because artworks vary so much from piece to
piece. That’s what makes them unique. But strategies we develop for handling one artwork
certainly give us experience to draw from on the next. With For SAAM for instance, we’re
learning that the code and the components are of equal importance. It would be unwise to
migrate either part to a more stable system without accounting for the other.

Ricky: I imagine that contributing to The Art of Video Games exhibition held last year
presented some opportunities to understand some of the nuances of working with time based
media art in software. Could you mention other exhibitions or works which allowed you to
appreciate the unique challenges of this type of curation?

Michael: Yes, The Art of Video Games presented some fantastic learning opportunities around
media art in software. That exhibition in one sense foregrounded the evolutionary changes in
hardware, software and interactivity. And it explored how creativity arrived from within the
rules of the material. On the opposite side of the coin, we are exhibiting artworks in our
WatchThis! gallery that experiment with those rules, challenging the very behaviors of
technology and sometimes intentionally breaking technology. This is a strategy some artists
employ to uncover new ideas and/or better understand ourselves. But, caring for artworks
that intentionally break the rules, or even visualize destruction, certainly presents its challenges
from a preservation perspective. We have to preserve something so that it can be
continuously destroyed.

Ricky: How does the construction of a “curatorial narrative” for an exhibition of time based
media art differ from one for traditional art?

Michael: “Curatorial narratives” are a curious thing I suppose, and the material really shapes
any exhibition. I think important elements to consider when developing an exhibition of time
based media are simply time and space. Digital and time based media creates, or can
create, a new performance space accessed by actors and unfolding in real time. Shaping the
‘spatial’ relationships between the artwork and the audience, actor or player can be very
informative. In looking at art: revealing the behaviors of the artist, the behaviors of the media
and the behaviors of the participant give us invaluable insight for understanding ourselves
and the world we inhabit.

Ricky: I would be curious to know if there are any essays, papers or projects that you have
looked to for insight on helping ensure future access to these works. If there are, I would love
to hear what you found particularly useful about them.

http://americanart.si.edu/exhibitions/archive/2012/games/

Preserving.exe

Page 41

Michael: Digital preservation among art collections is a very hot topic for museums and
institutions at the moment. Organizations like museums are not known for being particularly
nimble, but commercial changes in technology are really forcing the issue. So now there are
incredibly smart people tackling these issues within them. A number of pan-institutional
projects have been formed and they are generating great ideas published for public
consumption, (notably something that institutions do very well). The Smithsonian has its own
Time Based Media Art Conservation Initiative that is currently investigating models for trusted
digital repositories used for documenting, storing and maintaining moving image artworks.
There is also the Variable Media Network started by the Solomon R. Guggenheim Museum.
And, of course there is Matters in Media Art resulting from a fantastic collaboration between
the New Art Trust and its partner museums at Tate in the UK, Museum of Modern Art in New
York and the San Francisco Museum of Modern Art. Projects like these are a really compelling
and inspiring use of resources.

Ricky: What different groups at the Smithsonian Institution are working on preserving this kind
of time based media art? I would be curious to hear a bit about the different players and the
different roles that are emerging around this material.

Michael: One thing that is very clear about “time based art” is that it would be impossible for
one individual to understand every aspect of the field in all its complexity. The Smithsonian is
large and includes a number of independent collections. While each museum on campus
handles their respective collections differently, we’ve come together around these issues and
are finding new ways to leverage the tremendous institutional knowledge captured here.
There is a joint, time based art conservation initiative that includes representatives not only
from each museum, but each discipline within the museum. We have curators, registrars,
conservators, technology specialists, mathematicians, engineers, archivists … collectively, we
can tackle challenges facing our time-based art collections by communicating with truly
knowledgeable experts in other fields.

Ricky: What areas do you feel we need more research or tools to support conserving this kind
of material?

Michael: I’d like to find interesting ways to document the lifecycle of media artworks. This
might be out of left field a bit, but artworks like this seem to live and breath in ways that are
unique in the arts and unique in their time or historical place. They grow, or shrink. They
respond to their surroundings. They physically evolve. They consume. They age. They die …
In some cases they reproduce. Outside of the box, I think we might benefit from some creative,
comparative research with animal sciences, through their documentation of life cycles. We can
look at the tools used by zoos and their conservation practices with living specimens. How do
they document natural behaviors of a living creature? Perhaps this might generate some new
ideas for handling something like an artwork, something that is uniquely human.

http://www.variablemedia.net/e/index.html
http://www.tate.org.uk/about/projects/matters-media-art

	SOFTWARE USE CASES
	USE CASES AND THE THREE LURES
	The Lure of the Screen
	The Lure of the Authentic Experience
	The Lure of the Executable

	CONCLUSION: IS RESISTANCE FUTILE?

