
Department of Computer Science, Johns Hopkins University

Managing the Lifetime of Versions
in Digital Archives

Randal C. Burns
for the Digital Government (dg.o)

DIGARCH PIs Meeting

17 May 2005

dg.o: DIGARCH PIs May 17th, 2005

Project Goals

 Secure deletion for versioning archives
– systems compliant with the security and

auditability mandates of federal legislation

– support privacy rights of individuals

– limit liability of data owners and managers

 Development of technology
– storage system and cryptographic tools

 Release an open-source file system
– inexpensive compliance and privacy for everyone

dg.o: DIGARCH PIs May 17th, 2005

Regulating the Paperless World

 Congress and the courts are addressing the
importance of managing electronic records

 Over 4,000 laws and regulations
– corporate records and auditing (Sarbanes-Oxley, 2002)
– Federal Information Security Management Act (2002)
– Federal Records Act

 Some with explicit deletion requirements
– Health Insurance Portability and Accountability Act (1996)

dg.o: DIGARCH PIs May 17th, 2005

Fine-Grained, Secure Deletion
 Secure deletion = deleted data are irrecoverable

– to the owner of the data or system administrators

– when an adversary has physical access to a disk

– when an adversary has encryption keys

 Fine-grained = a single version of a file may be
deleted

 Present systems aren’t good enough
– free data blocks for use in future allocations

– even after reallocation, overwritten data may be recovered

dg.o: DIGARCH PIs May 17th, 2005

The Need for Secure Deletion
 For privacy protection

– re-classifying information involves deletion

– when a disk is retired or stolen

– patients have the right to redact portions of their records

 To limit liability
– records that go out of audit scope should do so forever

 Even in permanent archives
– as part access control, changing policy

– for storage management, any time data are moved

dg.o: DIGARCH PIs May 17th, 2005

Obstacles to Secure Deletion

 Existing solutions do not translate to
versioning archives

 Secure overwriting is untenably slow
– data blocks are overwritten many times with

alternating patterns of 1s and 0s

– magnetic media is degaussed

 Cryptographic techniques are not fine-grained

dg.o: DIGARCH PIs May 17th, 2005

The Central Idea

 A keyed transform
– converts a data block and a nonce

– into an encrypted block and a stub

 When the key is private, data are secure and
authenticated

 Securely deleting stub, securely deletes block, even
after the key has been exposed

iiik sCNBf ||),(→

dg.o: DIGARCH PIs May 17th, 2005

C0

Secure Deletion Example

C1 C2

s0 s1 s2
11 …

Disk

File Metadata

dg.o: DIGARCH PIs May 17th, 2005

17 …

C0

Secure Deletion Example

C1 C2

s0 s1 s2
11 …

Disk

File Metadata

s0 s2

Receive a write to block #2
at time 17

C1’

s1’

dg.o: DIGARCH PIs May 17th, 2005

C0

Secure Deletion Example

C1 C2 C1’

s0 s1 s2
11 …

Disk

s0 s1’ s2
17 …

File Metadata

Delete file at time 11

dg.o: DIGARCH PIs May 17th, 2005

C0

Secure Deletion Example

C1 C2 C1’

s0 s1 s2
11 …

Disk

s0 s1’ s2
17 …

File Metadata

Delete file at time 11

Block C1 is deleted permanently

dg.o: DIGARCH PIs May 17th, 2005

Features of our System Design

 Stubs are not secret
– stored on disk as part of metadata

 Stubs make for efficient, secure deletion
– stubs are stored contiguously

– delete a large amount of data (1 MB) by overwriting a small,
contiguous region of stubs (4 KB)

 Increases deletion performance by a factor of a
thousand or more

– when compared with secure overwriting

– depending upon file size and system block size

dg.o: DIGARCH PIs May 17th, 2005

Applicability of Secure Deletion

 For systems that
– use disk encryption

– share-content between files or versions

 This includes versioning file systems and
content-indexing archives

dg.o: DIGARCH PIs May 17th, 2005

Project Tasks

 Development of secure deletion algorithms
– provable security

– minimize space overhead

 System development
– compliance features for our ext3cow open-source,

versioning file system for Linux

– build into content sharing archives

 Key management for versions

dg.o: DIGARCH PIs May 17th, 2005

Research Directions

 Secure deletion across multiple replicas
– delete a file system image and its backup(s)

– ability to delete and fault-tolerance compete

 Strong auditability
– provably secure version histories

dg.o: DIGARCH PIs May 17th, 2005

dg.o: DIGARCH PIs May 17th, 2005

A Paperless World

 Information is becoming entirely electronic
– financial records, medical records, federal data

– 300 million computers storing 150,000 terabytes

 Tradeoffs in electronic record keeping
– eases use, sharing, and indexing/searching

– creates a new set of vulnerabilities
 exposure of data that are deleted or discarded

 the undetected modification of archived data

dg.o: DIGARCH PIs May 17th, 2005

Distilling Regulatory Requirements

 Audit Trail
– Files should be versioned over time
– Versions need to accessible in real-time

 Secure Storage
– Privacy and confidentiality

 Authentication and Non-repudiation
– Binding a person to the changes they make
– Able to make a strong statement about the validity

of data

dg.o: DIGARCH PIs May 17th, 2005

Existing Solutions

 Secure Overwrite [Gutmann 1996]
– data blocks are overwritten many times with alternating

patterns of 1s and 0s

– magnetic media is degaussed

 Key Disposal [Boneh & Lipton 1996]
– data encrypted with a key

– key is securely deleted, eliminating meaningful data access

dg.o: DIGARCH PIs May 17th, 2005

The Ext3cow File System

 Open-source file system that implements file
system snapshot and versioning
– Captures immutable, point-in-time views of the

entire file system

 Novel and intuitive time-shifting interface for
accessing the past

 Encapsulated entirely in the file system

 Low storage overhead and negligible
performance degradation

dg.o: DIGARCH PIs May 17th, 2005

Ext3cow Status

 Fully implemented file system available at:
www.ext3cow.com

– Thousands of visitors, hundreds of downloads

 Active development mailing list

 Ext3cow being used as the foundation of other
research and industrial projects

– JHU, UCB, UCSC, Columbia, USC

– Infrant Technologies

 A paper on the implementation of ext3cow to appear
in ACM Transactions on Storage, May, 2005

dg.o: DIGARCH PIs May 17th, 2005

Our Algorithms
All-or-Nothing Deletion
 In AON, all ciphertext

blocks must be present
in order to decrypt a
block

 The stub is an
expansion of the
encrypted data

 Without stub, data is
irrecoverable

 Efficient, however,
weak against known-
plain text attacks

Random Key Deletion
 Create a random key

for every block
encrypted

 Encrypt data with
random key

 Stub is the encryption of
random key with the
user’s key

 May be slower, requires
more space

dg.o: DIGARCH PIs May 17th, 2005

Electronic Record Legislation
 HIPAA (1996)

– Technical security
mechanisms

– Physical safeguards

 E-SIGN (2000)
– Digital contracts are as

legitimate as paper
contracts

 FISMA (2002)
– Framework for ensuring

security controls for storage
– Security of system must be

commensurate with security
of data

 Sarbanes-Oxley (2002)
– CEO, CFO responsible for

accurate financial reports
– Management assessment of

internal controls
– Real time disclosure
– Criminal penalties for altering

documents

 Gramm-Leach-Bliley (2002)
– Consumer records kept

confidential
– Protect against threats and

unauthorized access

 Federal Records Act
 DoD Directive 5015.2

dg.o: DIGARCH PIs May 17th, 2005

AON Encryption

txxx

ccCTRAESxx

xidctr

ccSHAHMACt

ddCTRAEScc

xidctr

m

m
ctr
tm

idx

mM

m
ctr
Km

idx

⊕⊕⊕←

−←

←

−−←

−←

←

−−

−−−

...:6

),...,(,...,:5

0||||:4

),...,(1:3

),...,(,...,:2

0||1||||:1

10

11

||||128
2

1

11

1||||128
1

2

1

Input: Data d1,…dn, Block ID id, Counter x, Encryption key K, MAC key M

Output: Ciphertext x1,…xm, Stub x0

dg.o: DIGARCH PIs May 17th, 2005

Random Key Encryption

),,(1:6

)(:5

0||||:4

),...,(,...,:3

||:2

:1

0

||||128

11

rcctrSHAHMACt

kCTRAESc

xidctr

ddAEcc

xidnonce

k

oM

ctr
K

idx

n
nonce
km

AE
R

−−←

−←

←

←

←

Κ←

−−

Input: Data d1,…dn, Block ID id, Counter x, Encryption key K, MAC key M

Output: Ciphertext c1,…cn, Stub x0, t, c1,…cm

