DNA data storage update

Karin Strauss, Microsoft Research

Why DNA?

Density

Credit: Tara Brown Photography / University of Washington

Relevance

Durability

Computation

Copies

DNA data storage basics

Store data in synthetic DNA strands

Simple mapping:

Bits	Base
00	Α
01	С
10	G
11	Т

DNA storage end-to-end system

Previously featured...

Codec: 1GB

End-to-end system

Nanopore readout

Library automation

Molecular similarity-based search

Results

New since last meeting

Physical recovery limits

Bias sources

Preservation study

Sustainability study

Scaling synthesis

DNA Data Storage Alliance

First whitepaper published

Preserving our Digital Legacy: An Introduction to DNA Data Storage

Our first whitepaper will give you a good overview of DNA Data Storage technology and the need for a new archival storage medium that will help with the explosive growth of digital data.

50+ members and growing

Questions?