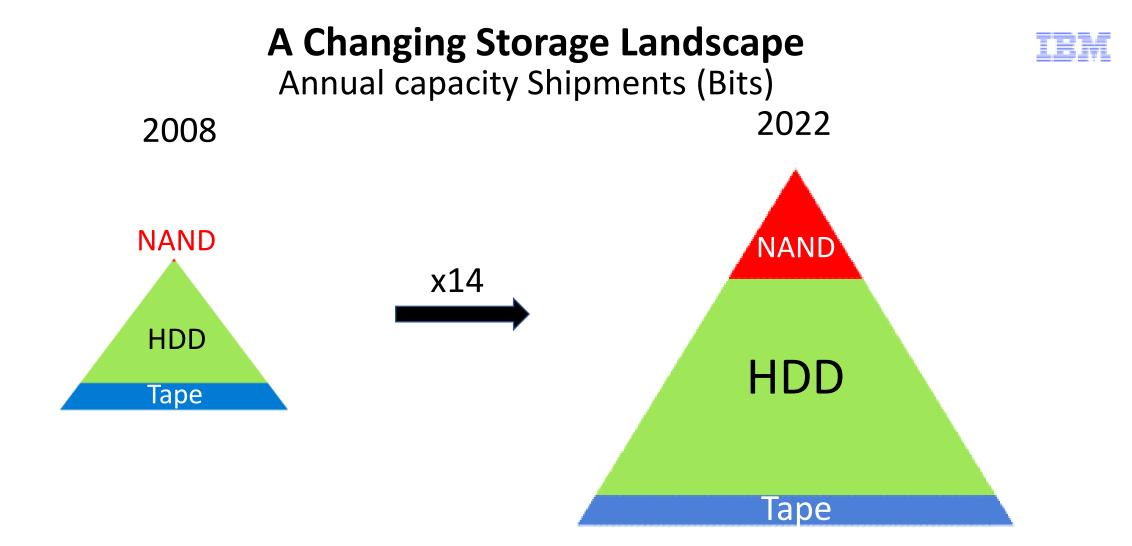
A Changing Storage Landscape – Tape, HDD, NAND

LOC Designing Storage Architecture for Digital Collections March 23th, 2023,

Georg Lauhoff (Sr Engineer) and Gary M Decad (Sr Manager) IBM Storage, Tape Technology, San Jose, CA


DATA METHODOLOGY

- Data added to the previous study: R. Fontana, G. Decad AIP Advances 8 (5) 056506 (2018) and Library of Congress presentations
- Data obtained from publicly available sources
- Parameters considered
 - Tape: LTO media only
 - HDD: All hard disk drives with no differentiation for capacity, disk diameter, platter number
 - NAND: All chip shipments (not just SSD) with no differentiation for bits/cell, planar or 3D design, or capacity
- Data qualifiers
 - Cost/Bit is determined as **Total Revenue / Total Bits Shipped** and is not representative of any single product
 - Areal Density is determined as the "best" or "highest" value in a shipped product, i.e. for LTO Tape Media, it is the areal density for LTO9 even though LTO2-LTO7 media is also shipped as product
- Tape data LTO Media Only
 - The LTO Consortium published bit shipment information for 2018 and 2019 does not include LTO-7 Type M units .
 - Data is for media only and does not include contributions from drive sales, library sales, or TS11XX, Oracle, SpectraLogic
 - Media cost/bit is based on web-based pricing at www.tape4backup.com

Storage Landscape History

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
HDD															
Units (HDD millions)	540	557	652	620	577	551	564	470	425	406	374	315	268	258	~175
Bits Shipped (EB)	125	200	330	335	380	470	549	565	693	780	938	1034	1190	1418	1233
Areal Density (Gb/in ²)	380	530	635	750	750	900	900	1000	1100	1200	1200	1300 (2.5"SMR)	1300 (2.5"SMR)	1300	1100 (22TB CMR) 1300 (26TB SMR)
Revenue (\$B)	34.0	34.0	33.0	33.5	37.5	33.4	33.4	28.3	26.8	26.1	26.4	23.3	22.4	28	19
\$/TB Shipped	272	170	100	100	100	71	61	51	39	33	28	22.5	18.8	19.7	15.5
NAND															
Wafers (millions)	7.3	8.3	9.7	11.3	12.1	13.7	14.8	15.9	17.0	18.1	18.9	19.7	20.6	20.5	21.7
Bits Shipped (EB)	3	5.43	10.46	18.60	28	39	62.50	83	120	175	250	338	439	598	631
Areal Density (Gb/in ²)	200	280	330	550	550	850	1200	1500	2000	2500	3000	3800	4700	6970	9414
Revenue (\$B)	10.1	12.1	18.5	21.5	22.0	24.0	32.2	33.2	38.7	56.5	63.2	46.0	56.7	68.6	60.1
\$/TB Shipped	3333	2230	1770	1160	780	615	515	401	320	320	252	136	129	115	95
LTO TAPE MEDIA															
Units (cart millions)	27.1	24.3	25.0	24.3	23.4	21.6	22.2	19.4	19.4	18.0	12.7	11.9	8.6	9.3	
Bits Shipped (EB)	11	12	15.3	18.4	20.7	24.3	30.1	33.0	40.3	44.8	40	46	42.5	59.2	
Areal Density (Gb/in ²)	0.9 (LTO4) 1.2 (LTO5)		2.1 (LTO6)		4.1 (LTO7) 8.		8.5 (LTO8)			12 (LTO9)					
Revenue (\$B) ¹	1	0.70	0.70	0.70	0.62	0.54	0.50	0.59	0.65	0.66	0.43	0.48	0.36	0.51	
\$/TB Shipped (comp)	36.2	23.4	18.2	15.2	12.0	8.9	6.6	7.1	6.5	5.9	4.3	4.2	3.4	3.4	2.9

Data Storage trends for NAND (Flash), HDD and Tape Storage review in this talk

This study build on previous studies by *R. Fontana, G. Decad AIP Advances 8 (5) 056506 (2018)* Data obtained from publicly available sources

Georg Lauhoff, Gary Decad 3/2023 © IBM 2023

Storage Landscape

Introduction

World-wide electricity consumption from data center/transmission ~ 1% . *

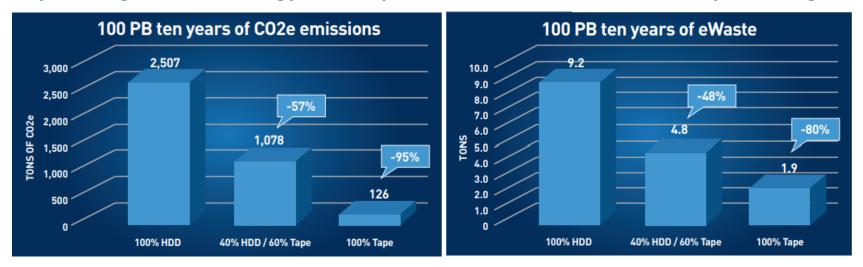
- doubled since 2015.
- further demand increase (AI, Internet of Things ..)

* IEA (2022), Data Centres and Data Transmission Networks, IEA, Paris https://www.iea.org/reports/data-centres-and-data-transmission-networks

Governments support semiconductor memory recently for geo-political reasons

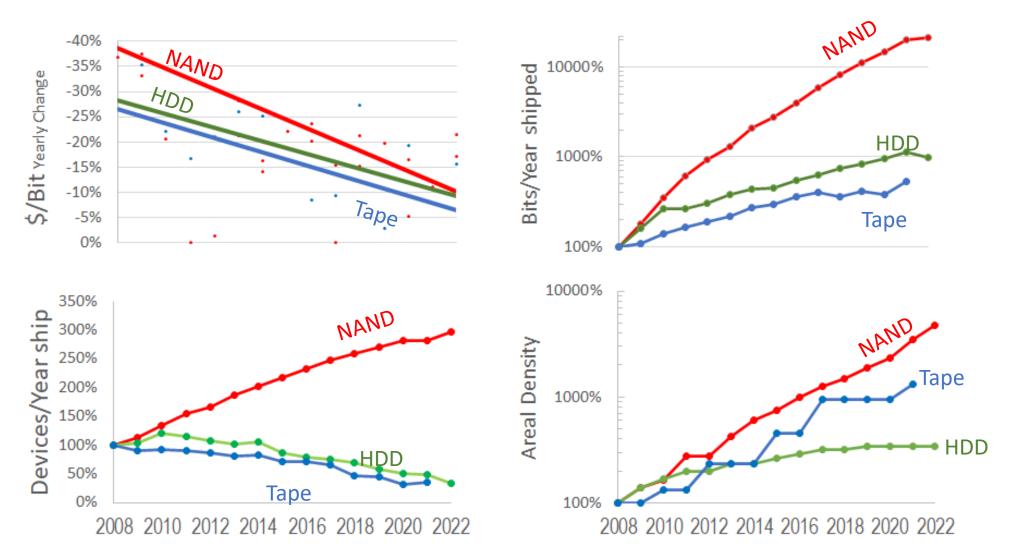
• Few policies address the energy and emissions footprint.

To create Energy Efficient Data Storage Technology progress needed & here reviewed Tape storage is essential to realize energy efficiency in storage landscape


Tape storage. Most energy efficient per bit stored

Solid-state drives (SSDs) vs HDD

SSD use less energy compared to HDD (operation cost) even though there is still debate when considering manufacturing

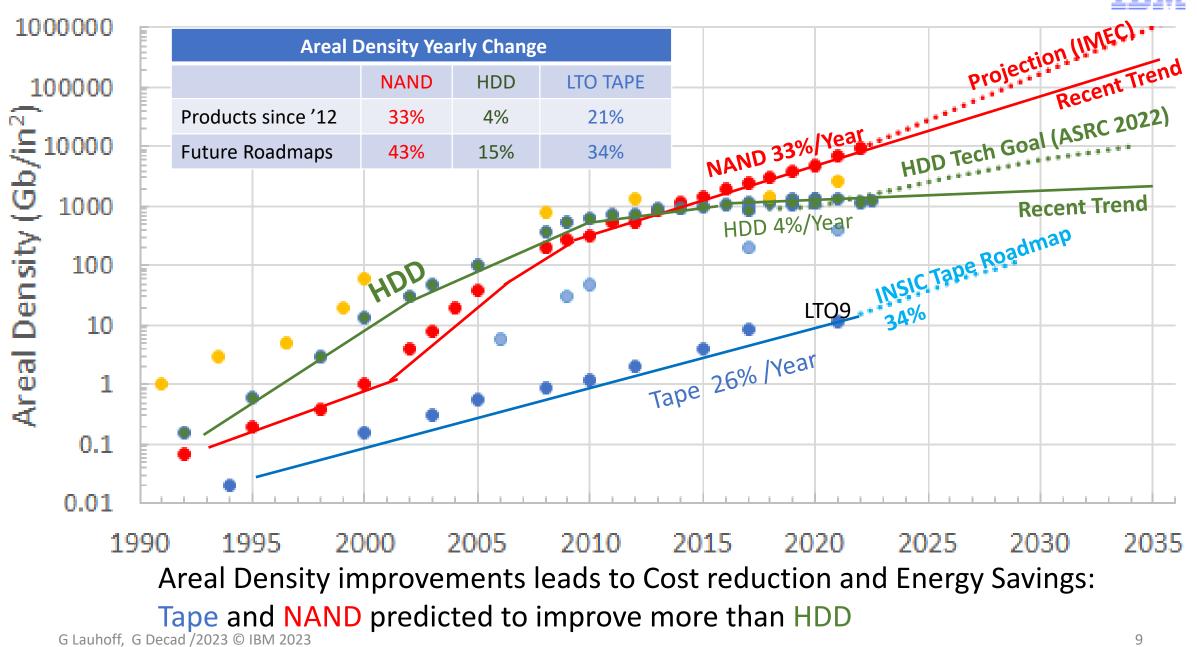

From https://www.energystar.gov/products/implement_efficient_data_storage_measures

Tape storage reduces energy consumption and electronic Waste while preserving data

https://asset.fujifilm.com/www/sg/files/2021-09/d9c014a35ae86bdc41d78abf6e693bb1/Improving_IT_Sustainability_with_Tape_BJC.pdf

Annual Cost/bit, Bit shipments, Device Shipments and Areal Density Change

Tape in growth phase, as demand for archival storage, which mitigates climate change issues, grows in the cloud hyperscale storage facilities, while having clear Roadmap for Areal Density Growth

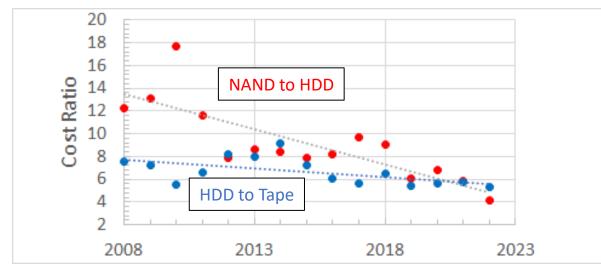

NAND

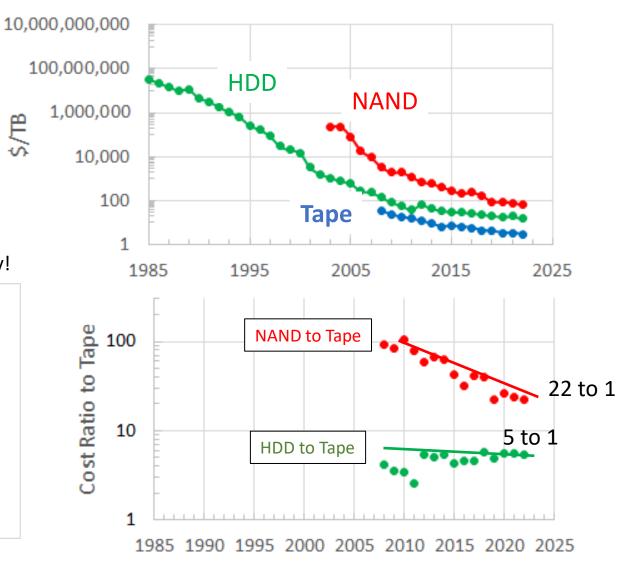
HDD

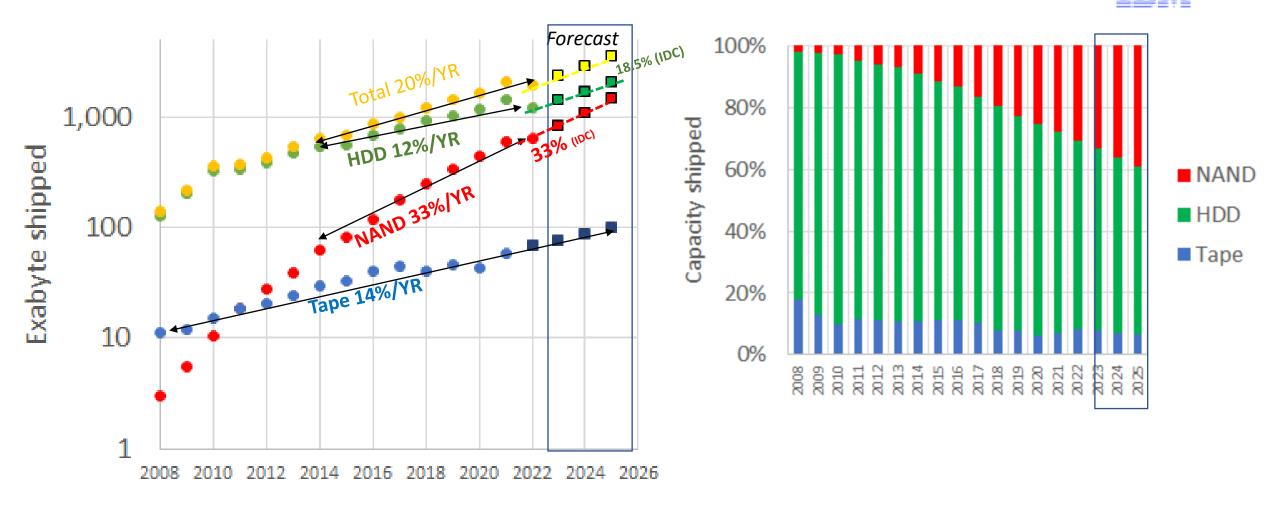
• Tape

Technology Trends (Areal Density) of NAND, HDD, Tape BM NAND 33% Year 10000 HDD 4%/Year 1000 Areal Density (Gb/in²) HDD Demo Tape Demo 100 10 Tape 26%/ Year 1 HDD 0.1 0.01 1990 1995 2000 2005 2010 2015 2020 2025

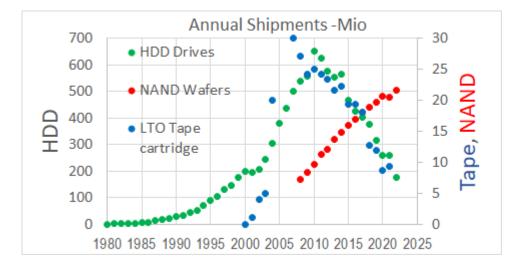
Products and Projections of Areal Densities

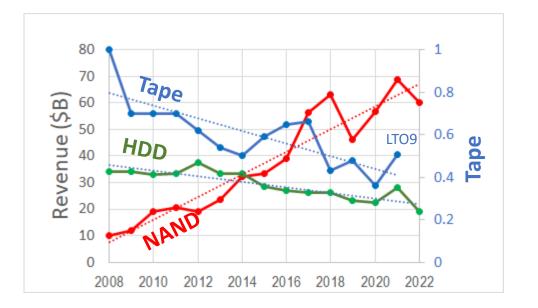


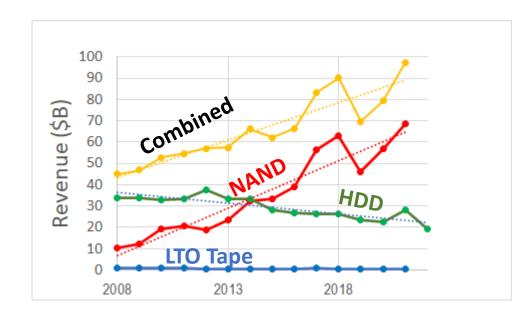

Cost Trends


	NAND	HDD	LTO TAPE
2022 (\$/TB)	64	15	3
Cost/TB Ratio to Tape	22	5.4	
Energy Consumption per capacity	Medium	Largest	Smallest

- Annual \$/TB decreases for all technologies
- Tape most sustainable as it uses least power and is cheapest to buy!


Bit Shipments




We expect more **Tape** demand for Cloud Storage (less \$ and Energy)

- NAND largest Revenue
- NAND and HDD drop in 2022
- HDD Slow downward trend in revenue
- LTO Tape Media Revenue increase with LTO9 Intro
- General Observation: Magnetic storage technologies are showing revenue decreases over time.

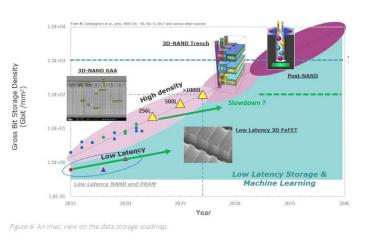
Summary

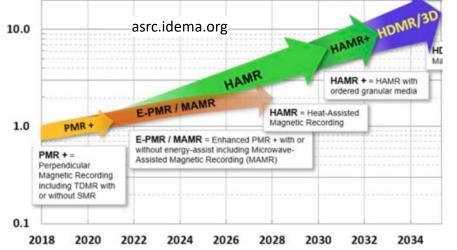
- NAND largest growth
- HDD Drive capacity increase by adding disks to a drive
- Tape most energy efficient & long-term large storage capacity growth outlook

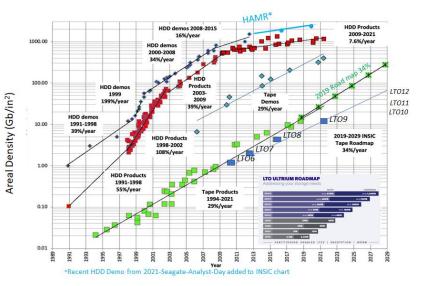
Yearly	2022					
	NAND	HDD	LTO MEDIA (to '21)	NAND	HDD	LTO MEDIA (to 2021)
Bit Shipments (EB)	36%	13%	12%	598	1230	59
Cost/Bit (\$/TB)	-19%	-17%	-13%	95	15.5	2.9 (compressed)
Revenue (\$B)	12%	-3%	-2%	60	19	0.51
Areal Density (Gb/in2)	33%	4%	21%	9400	1100	12

US Chip Act strengthen manufacturing base for semi-conductor Future storage technologies require R&D government and industry focus to create resilient and energy-efficient storage systems

Appendix

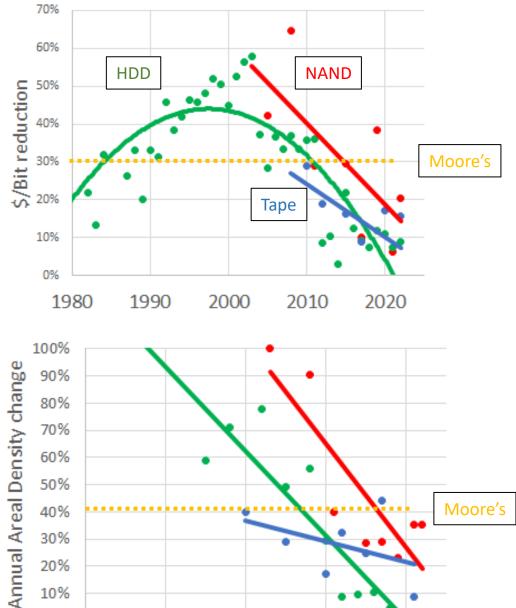

Recent Products vs Technology Future Dreams


IBM

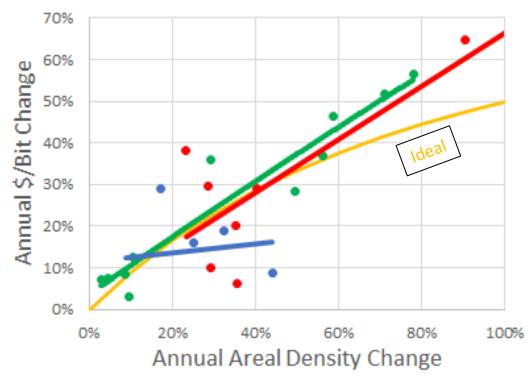

NAND (by IMEC)

Areal Density Yearly Change								
NAND HDD LTO TAPE								
Products since 2012	33%	4%	21%					
Roadmaps shown above	43%	15%	34%					

Future Roadmaps predict stronger growth compared to recent product improvements!


NAND Projection from : <u>https://www.imec-int.com/en/articles/role-3d-nand-flash-and-fefet-data-storage-roadmap</u> HDD Projection from : https://www.asrc.idema.org Tape Projections adapted from INSIC

G Lauhoff, G Decad /2023 © IBM 2023


Storage Landscape

Cost And Areal Density Trends & Moore's Law

0%

The improvements are getting smaller with time for NAND, HDD and Tape

Yearly Change 2012-2022	NAND	HDD	LTO MEDIA		
Cost/Bit	-19%	-17%	-13%		
Areal Density	33%	4%	21%		