
Design and Operation of Exascale Archives in Azure

Aaron Ogus Shashidhar Joshi

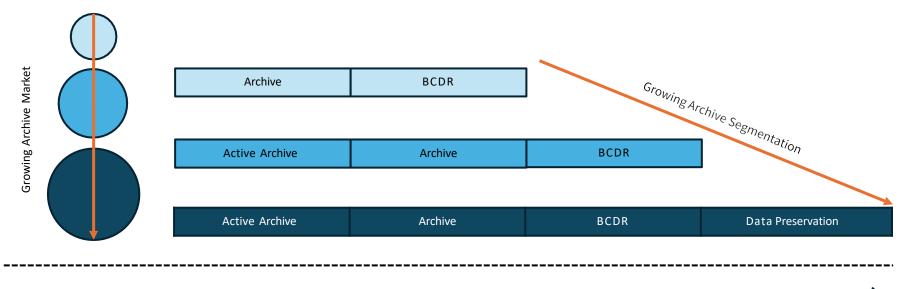
Data Growth and Storage

Annual Size of the Global Datasphere 175 ZB 180 160 140 Long-term trend will continue ≥ 120 5 100 80 60 40 20 0 2012 2013 2014 2017 2018 2019 2020 2021 2022 2023 2024 2025 2015 2016 Source: Data Age 2025: IDC Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

- Archive Storage is part of this Growth
- Just within Azure, Archive Storage operates at massive scale
 - o EBs of Data
 - Trillions of Objects
 - Spread across 100's of Data Center across the Globe
 - Billions of Requests (Monthly)

HDD

SSD


NVM-NAND

NVM-Other

Optical

Tape

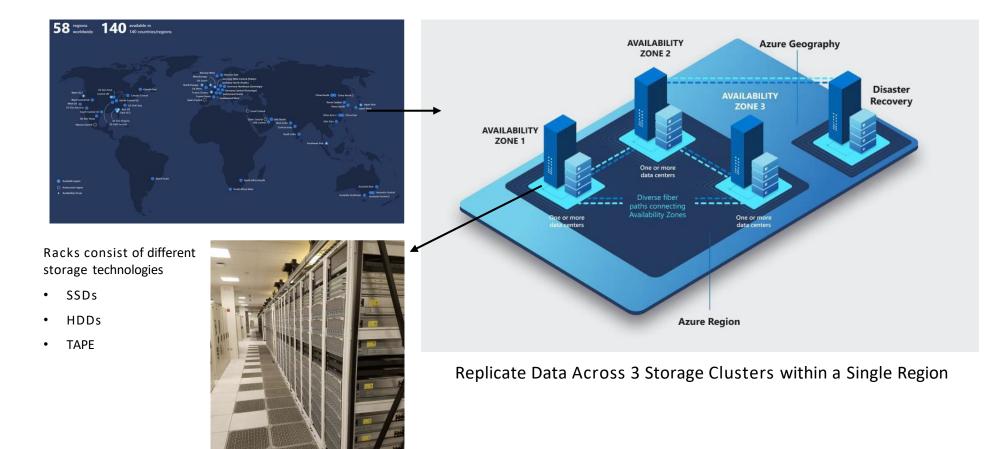
Archive Landscape and Growth

Data Storage in the Cloud

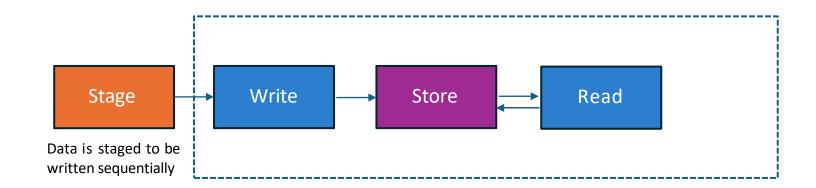
Benefits with Cloud Storage

- Choose storage based on your need
- End to End Data Protection
- Geo, Regional and Zonal redundancies
- Management and Monitoring Tools
- Scale up and down as needed
- High Availability and Resiliency

Type of storage account	Supported redundancy configurations	Supported values for the kind parameter	Supported values for the sku or SkuName parameter	
Standard general- purpose v2	LRS / GRS / RA-GRS / ZRS / GZRS / RA-GZRS	StorageV2	Standard_LRS / Standard_GRS / Standard_RAGRS/ Standard_ZRS / Standard_GZRS / Standard_RAGZRS	
Premium block blobs	LRS / ZRS	BlockBlobStorage	Premium_LRS / Premium_ZRS	
Premium file shares	LRS / ZRS	FileStorage	Premium_LRS / Premium_ZRS	
Premium page blobs	LRS	StorageV2	Premium_LRS	
Legacy standard general- purpose v1	LRS / GRS / RA-GRS	Storage	Standard_LRS / Standard_GRS / Standard_RAGRS	
Legacy blob storage	LRS / GRS / RA-GRS	BlobStorage	Standard_LRS / Standard_GRS / Standard_RAGRS	


Data Storage Tiering in the Cloud

Customer can


- Set up Access Tier based on need
- Change Blob Tier Settings
- Lifecycle Management Policies
- Geo, Regional and Zonal redundancies

	Hot tier	Cool tier	Cold tier	Archive tier
Availability	99.9%	99%	99%	99%
Availability (RA-GRS reads)	99.99%	99.9%	99.9%	99.9%
Usage charges	Higher storage costs, but lower access and transaction costs	Lower storage costs, but higher access and transaction costs	Lower storage costs, but higher access and transaction costs	Lowest storage costs, but highest access, and transaction costs
Minimum recommended data retention period	N/A	30 days ¹	90 days ¹	180 days
Latency (Time to first byte)	Milliseconds	Milliseconds	Milliseconds	Hours ²
Supported redundancy configurations	All	All	All	LRS, GRS, and RA-GRS ³ only

Storing EBs of Data in the Cloud

Cloud Storage Flow and Features

- Erasure coded for data protection
- Stored on Magnetic Media
- Rehydrate data to online tier when requested
- Periodic data scrubbing to correct errors, ensure data accuracy and reliability
- End to End Data Protection
- Migrate to new media at EOL

Archive Workloads

Observations from Workload

- Writes dominate
- Reads are infrequent
- Small reads require low latency random access
- Large reads require good throughput
- Archive Storage system needs dynamic provisioning to account for workload variances

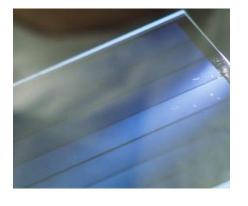
Challenges with current storage technologies

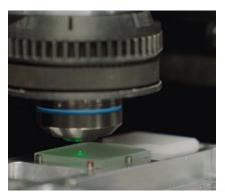
- Mechanical overheads lead to latencies
- Environmental conditions limit deployment capabilities
- Uncertainty with roadmaps, capacities and costs
- Need for media migrations at EOL
- Opportunity for new storage technologies

Silica for Archive Storage Technology

Storage System Disaggregation

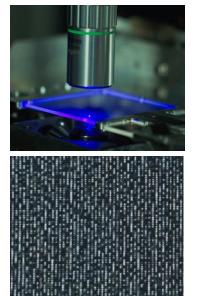
Scale Media, Writers, Readers, Library independently


Glass as Media, Optical Writers and Readers, Library and Robotics for Media Handling


Unique Media Properties Abundant supply Inexpensive Passive Storage – No Power Resilient to Environmental Conditions, EMP Proof Recyclable

Immutable, No Bit Rot or Data Corruption

Capacity and Performance


- Meet Storage Growth capacity demand via better storage density
- Performance (Random IO) per TB metric better than currently available Archive technologies
- Better TCO
- Sustainable

Glass Media

Writer

Meeting the Industry Growth

- The Industry will need more storage capacity to support future growth
- Magnetic Media Storage growth continues which is very promising and much needed for the foreseeable future
- In addition, the industry continues to look for new emerging technologies that are better suited for scale, economics and sustainability
 - DNA Storage
 - Folio Photonics
 - Cerabyte