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). 4 Protecting archival data

IN STORAGE
SYSTEMS

+ Mirroring: keep multiple copies
* All copies are identical
* Read any copy
* Write all copies

+ Erasure codes: use multiple
“chunks” for redundancy
* Read from desired chunk(s)

* Write is more complex
Write an entire stripe, or
Read-Modify-Write to update data
and parity

» Lower storage overhead!
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b, s How do erasure codes work?

IN STORAGE
SYSTEMS

+ Error correcting code: find the error and rebuild it

+ Erasure correcting code: given the broken (erased location), rebuild it
« Most archival storage systems are this type
» Use hashing to figure out which chunks are broken

+ Erasure correcting codes use linear equations to rebuild missing data
« Each symbol in the “row” has its own equation
« n data values & m erasure correcting symbols
* n data values = need n equations to rebuild

Do = Do

—— — — — —— D1 = D1

So || S1||S2||S3|[S4]|| S5 |p, =D,

s/ 1B/ B2l (Bl (B [Q D5 =Ds

- J JDyeoDie®Ds®D3=P
< Stripe " Do ® 20D1 @ 40D» ® 89Dz = Q
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), 4~ The math behind erasure codes

IN STORAGE
SYSTEMS

+ Erasure codes rely on finite fields (also called Galois fields)

* Add and multiply defined on fixed-width elements (usually 8 or 16 bits for
erasure codes)

* Normal “arithmetic” rules apply

+ This math can be done very quickly
» Addition is XOR
* Multiplication is more complex, but runs at gigabytes per second on
modern CPUs
+ Number of multiplications is usually the limiting factor
* There are usually shortcuts for creating the original symbols
* Rebuilding missing symbols (data) usually needs more multiplications
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). 4 Reliability and erasure codes

IN STORAGE
SYSTEMS

+ Long-term survival of data depends on several factors

ow many failures the erasure code can survive
ow much data is impacted by a failure
ow long it takes to restore protection after a failure

+ Systems can vary any of these parameters to decrease the
likelinood of data loss
 Fast rebuild = less likely that too many failures will accumulate
* Tolerate more failures = can rebuild more slowly and still be safe

* Decluster (spread data around) = multiple independent failures unlikely to
place large amounts of data in jeopardy

+ Estimates of data reliability based on
 Analytical modeling
» Simulations
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). Evaluating erasure codes

IN STORAGE
SYSTEMS

+ Erasure codes can differ in many ways
* Number of data storage devices in a “stripe”
Often, different stripes span different subsets of storage devices
* Number and type of failures that can be tolerated
 Amount of overhead

 Number of devices that must be written (or read) for
Normal case
Single device failure
Larger-scale failures

» Complexity of generating the parity symbols
» Complexity of rebuilding missing data from surviving information
+ Evaluating erasure codes is all about tradeoffs

* |If there were such a thing as a perfect erasure code, we’d all use it!
» Choice of erasure code depends on what you want from it
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), ;, Reed-Solomon codes

IN STORAGE
SYSTEMS

+ Reed-Solomon is the most common erasure code
* RAID-5 (N+1 parity) is a special case of Reed-Solomon
* RAID-6 (P+Q parity) is also a type of Reed-Solomon

+ Reed-Solomon can be generated very quickly for 1-2 parities
» XOR is essentially
* Multiplication by 2 is extremely fast, and is all that’s needed for Q

+ RS with more patrity is a bit slower

» Each successive parity symbol is a linear combination of all of the data
symbols in the stripe

+ Rebuilding missing data is more expensive
* Invert an NxN matrix (once, so not so bad)

* Rebuild missing symbol using dot product of N existing symbols and one
row of the matrix
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), 4, XOR-based codes

IN STORAGE
SYSTEMS

+ XOR is cheap = just use XOR!

+ Typically use bigger basic
chunks on each device
» Example: run XORs across and
diagonally
+ There can be arbitrarily complex
approaches to this

» Paper on STAIR codes in FAST
2014

e Survive combinations of failed
devices and failed individual
chunks

* May combine XOR and
multiplication
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). 4 Hierarchical (pyramid, LRC) codes

IN STORAGE
SYSTEMS

+ Differential RAID coverage
* N+1 RAID (usually) for smallish
groups
* More parity covering multiple
N+1 RAID groups

+ Fast recovery from small
failures

+ Ability to recover (more slowly)
from larger-scale failures
 Additional parity uses multiplication

» Additional parity is across a larger
set of data elements

Survives more failures with
lower overhead

X/
2 X4
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). 4 Regenerating codes

IN STORAGE
SYSTEMS

+ Combine multiple data symbols on a single device = rebuilding
requires reading fewer devices
 Less network traffic for rebuilding
» Still survives same number of failures
* May need to read more from a device just to return data
 Need to read more from each device, in most cases!

+ Can require more multiplications for most operations
» Basic (non-failure) data reads
* Reconstruction

+ May be useful in deep archive: access fewer devices to rebuild
* Performance of reads is often less important
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).« So what should you ask?

IN STORAGE
SYSTEMS

+ Common cases:
* How long does a “regular’ data read take?
* How long does it take if a device has failed and the data is on the device?
 How much does rebuilding impact performance even for non-affected data?
+ How Is data distributed across the devices?

 Typically declustered: each stripe uses a different set of devices

+ How many device failures can the erasure code withstand?

* How long does it take to rebuild all of the data from a lost device, and where
does it get rebuilt?

* How likely is it that data will be lost, and how much data would be lost?

+ |s the bottleneck due to computation, network or 1/0O?
* Typically, computation is easiest to overcome
* |/O is often the hardest, especially for archival systems

+ There are a lot more variations on erasure codes than we could cover
today!
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). 4 Questions?

IN STORAG

SSSSSSS

We’'re happy to answer questions
about erasure codes!

elm@cs.ucsc.edu

http://www.ssrc.ucsc.edu/
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